Высота в равнобедренном треугольнике зная. Задачи про равнобедренные треугольники


Равнобедренным является такой треугольник , у которого длины двух его сторон равны между собой.

При решении задач по теме «Равнобедренный треугольник» необходимо пользоваться следующими известными свойствами :

1. Углы, лежащие напротив равных сторон равны между собой.
2.
Биссектрисы, медианы и высоты, проведенные из равных углов, равны между собой.
3.
Биссектриса, медиана и высота, проведенные к основанию равнобедренного треугольника, между собой совпадают.
4.
Центр вписанной и центр описанной окружностей лежат на высоте, а значит и на медиане и биссектрисе, проведенной к основанию.
5.
Углы, которые являются равными в равнобедренном треугольнике всегда острые.

Треугольник является равнобедренным, если у него присутствуют следующие признаки :

1. Два угла у треугольника равны.
2.
Высота совпадает с медианой.
3.
Биссектриса совпадает с медианой.
4.
Высота совпадает с биссектрисой.
5.
Две высоты треугольника равны.
6.
Две биссектрисы треугольника равны.
7.
Две медианы треугольника равны.

Рассмотрим несколько задач по теме «Равнобедренный треугольник» и приведем подробное их решение.

Задача 1.

В равнобедренном треугольнике высота, проведенная к основанию, равна 8, а основание относится к боковой стороне как 6: 5. Найти, на каком расстоянии от вершины треугольника находится точка пересечения его биссектрис.

Решение.

Пусть дан равнобедренный треугольник АВС (рис. 1) .

1) Так как АС: ВС = 6: 5, то АС = 6х и ВС = 5х. ВН – высота, проведенная к основанию АС треугольника АВС.

Так как точка Н – середина АС (по свойству равнобедренного треугольника), то НС = 1/2 АС = 1/2 · 6х = 3х.

ВС 2 = ВН 2 + НС 2 ;

(5х) 2 = 8 2 + (3х) 2 ;

х = 2, тогда

АС = 6х = 6 · 2 = 12 и

ВС = 5х = 5 · 2 = 10.

3) Так как точка пересечения биссектрис треугольника является центром вписанной в него окружности, то
ОН = r . Радиус вписанной в треугольник АВС окружности найдем по формуле

4) S ABC = 1/2 · (AC · BH); S ABC = 1/2 · (12 · 8) = 48;

p = 1/2 · (AB + BC + AC); p = 1/2 · (10 + 10 + 12) = 16, тогда ОН = r = 48/16 = 3.

Отсюда ВО = ВН – ОН; ВО = 8 – 3 = 5.

Ответ: 5.

Задача 2.

В равнобедренном треугольнике АВС проведена биссектриса АD. Площади треугольников ABD и ADC равны 10 и 12. Найти увеличенную в три раза площадь квадрата, построенного на высоте этого треугольника, проведенной к основанию АС.

Решение.

Рассмотрим треугольник АВС – равнобедренный, АD – биссектриса угла А (рис. 2).

1) Распишем площади треугольников ВАD и DAC:

S BAD = 1/2 · AB · AD · sin α; S DAC = 1/2 · AC · AD · sin α.

2) Найдем отношение площадей:

S BAD /S DAC = (1/2 · AB · AD · sin α) / (1/2 · AC · AD · sin α) = AB/AC.

Так как S BAD = 10, S DAC = 12, то 10/12 = АВ/АС;

АВ/АС = 5/6, тогда пусть АВ = 5х и АС = 6х.

АН = 1/2 АС = 1/2 · 6х = 3х.

3) Из треугольника АВН – прямоугольного по теореме Пифагора АВ 2 = АН 2 + ВН 2 ;

25х 2 = ВН 2 + 9х 2 ;

4) S A ВС = 1/2 · AС · ВН; S A В C = 1/2 · 6х · 4х = 12х 2 .

Так как S A ВС = S BAD + S DAC = 10 + 12 = 22, тогда 22 = 12х 2 ;

х 2 = 11/6; ВН 2 = 16х 2 = 16 · 11/6 = 1/3 · 8 · 11 = 88/3.

5) Площадь квадрата равна ВН 2 = 88/3; 3 · 88/3 = 88.

Ответ: 88.

Задача 3.

В равнобедренном треугольнике основание равно 4, а боковая сторона равна 8. Найти квадрат высоты, опущенной на боковую сторону.

Решение.

В треугольнике АВС – равнобедренном ВС = 8, АС = 4 (рис. 3).

1) ВН – высота, проведенная к основанию АС треугольника АВС.

Так как точка Н – середина АС (по свойству равнобедренного треугольника), то НС = 1/2 АС = 1/2 · 4 = 2.

2) Из треугольника ВНС – прямоугольного по теореме Пифагора ВС 2 = ВН 2 + НС 2 ;

64 = ВН 2 + 4;

3) S ABC = 1/2 · (AC · BH), а так же S ABC = 1/2 · (АМ · ВС), тогда приравняем правые части формул, получим

1/2 · AC · BH = 1/2 · АМ · ВС;

АМ = (AC · BH)/ВС;

АМ = (√60 · 4)/8 = (2√15 · 4)/8 = √15.

Ответ: 15.

Задача 4.

В равнобедренном треугольнике основание и опущенная на него высота, равны 16. Найти радиус описанной около этого треугольника окружности.

Решение.

В треугольнике АВС – равнобедренном основание АС = 16, ВН = 16 – высота, проведенная к основанию АС (рис. 4) .

1) АН = НС = 8 (по свойству равнобедренного треугольника).

2) Из треугольника ВНС – прямоугольного по теореме Пифагора

ВС 2 = ВН 2 + НС 2 ;

ВС 2 = 8 2 + 16 2 = (8 · 2) 2 + 8 2 = 8 2 · 4 + 8 2 = 8 2 · 5;

3) Рассмотрим треугольник АВС: по теореме синусов 2R = AB/sin C, где R – радиус описанной около треугольника АВС окружности.

sin C = BH/BC (из треугольника ВНС по определению синуса).

sin C = 16/(8√5) = 2/√5, тогда 2R = 8√5/(2/√5);

2R = (8√5 · √5)/2; R = 10.

Ответ: 10.

Задача 5.

Длина высоты, проведенной к основанию равнобедренного треугольника, равна 36, а радиус вписанной окружности равен 10. Найти площадь треугольника.

Решение.

Пусть дан равнобедренный треугольник АВС.

1) Так как центр вписанной в треугольник окружности является точкой пересечения его биссектрис, то О ϵ ВН и АО является биссектрисой угла А, а ток же ОН = r = 10 (рис. 5) .

2) ВО = ВН – ОН; ВО = 36 – 10 = 26.

3) Рассмотрим треугольник АВН. По теореме о биссектрисе угла треугольника

АВ/АН = ВО/ОН;

АВ/АН = 26/10 = 13/5, тогда пусть АВ = 13х и АН = 5х.

По теореме Пифагора АВ 2 = АН 2 + ВН 2 ;

(13х) 2 = 36 2 + (5х) 2 ;

169х 2 = 25х 2 + 36 2 ;

144х 2 = (12 · 3) 2 ;

144х 2 = 144 · 9;

х = 3, тогда АС = 2 · АН = 10х = 10 · 3 = 30.

4) S ABC = 1/2 · (AC · BH); S ABC = 1/2 · (36 · 30) = 540;

Ответ: 540.

Задача 6.

В равнобедренном треугольнике две стороны равны 5 и 20. Найти биссектрису угла при основании треугольника.

Решение.

1) Предположим, что боковые стороны треугольника равны 5, а основание – 20.

Тогда 5 + 5 < 20, т.е. такого треугольника не существует. Значит, АВ = ВС = 20, АС = 5 (рис. 6).

2) Пусть LC = x, тогда BL = 20 – x. По теореме о биссектрисе угла треугольника

АВ/АС = ВL/LC;

20/5 = (20 – x)/x,

тогда 4х = 20 – x;

Таким образом, LC = 4; BL = 20 – 4 = 16.

3) Воспользуемся формулой биссектрисы угла треугольника:

AL 2 = AB · AC – BL · LC,

тогда AL 2 = 20 · 5 – 4 · 16 = 36;

Ответ: 6.

Остались вопросы? Не знаете, как решать геометрические задачи?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

  1. Свойства равнобедренного треугольника.
  2. Признаки равнобедренного треугольника.
  3. Формулы равнобедренного треугольника:
    • формулы длины стороны;
    • формулы длины равных сторон;
    • формулы высоты, медианы, биссектрисы равнобедренного треугольника.

Равнобедренным называется треугольник, у которого две стороны равны. Эти стороны называются боковыми , а третья сторона - основанием .

АВ = ВС - боковые стороны

АС - основание


Свойства равнобедренного треугольника

Свойства равнобедренного треугольника выражаются через 5 теорем :

Теорема 1. В равнобедренном треугольнике углы при основании равны.

Доказательство теоремы:

Рассмотрим равнобедренный Δ ABC с основанием АС .

Боковые стороны равны АВ = ВС ,

Следовательно углы при основании ∠ BАC = ∠ BСA .

Теорема о биссектрисе, медиане, высоте, проведенной к основанию равнобедренного треугольника

  • Теорема 2. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.
  • Теорема 3. В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.
  • Теорема 4. В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.

Доказательство теоремы:

  • Дан Δ ABC .
  • Из точки В проведем высоту BD.
  • Треугольник разделился на Δ ABD и ΔCBD. Эти треугольники равны, т.к. гипотенузы и общий катет у них равны ().
  • Прямые АС и BD называются перпендикуляром.
  • В Δ ABD и Δ BCD ∠ BАD = ∠ BСD (из Теоремы 1).
  • АВ = ВС - боковые стороны равны.
  • Стороны АD = СD, т.к. точка D отрезок делит пополам.
  • Следовательно Δ ABD = ΔBCD.
  • Биссектриса, высота и медиана это один отрезок - BD

Вывод:

  1. Высота равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.
  2. Медиана равнобедренного треугольника, проведенная к основанию, является высотой и биссектрисой.
  3. Биссектриса равнобедренного треугольника, проведенная к основанию, является медианой и высотой.

Запомни! При решении таких задач опусти высоту на основание равнобедренного треугольника. Чтобы разделить его на два равных прямоугольных треугольника.

  • Теорема 5. Если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны.

Доказательство теоремы:

Дано два Δ ABC и Δ A 1 B 1 C 1 . Стороны AB = A 1 B 1 ; BC = B 1 C 1 ; AC = A 1 C 1 .

Доказательство от противного.

  • Пусть треугольники не равны (а то треугольники были равны по первому признаку).
  • Пусть Δ A 1 B 1 C 2 = Δ ABC, у которого вершина C 2 лежит в одной полуплоскости с вершиной C 1 относительно прямой A 1 B 1 . По предположению вершины C 1 и C 2 не совпадают. Пусть D – середина отрезка C 1 C 2 . Δ A 1 C 1 C 2 и Δ B 1 C 1 C 2 – равнобедренные с общим основанием C 1 C 2 . Поэтому их медианы A 1 D и B 1 D являются высотами. Значит, прямые A 1 D и B 1 D перпендикулярны прямой C 1 C 2 . A 1 D и B 1 D имеют разные точки A 1 и B 1 , следовательно, не совпадают. Но через точку D прямой C 1 C 2 можно провести только одну перпендикулярную ей прямую.
  • Отсюда пришли к противоречию и теорему доказали.

Признаки равнобедренного треугольника

  1. Если в треугольнике два угла равны.
  2. Сумма углов треугольника 180°.
  3. Если в треугольнике биссектриса является медианой или высотой.
  4. Если в треугольнике медиана является биссектрисой или высотой.
  5. Если в треугольнике высота является медианой или биссектрисой.

Формулы равнобедренного треугольника

  • b - сторона (основание)
  • а - равные стороны
  • a - углы при основании
  • b

Формулы длины стороны (основания - b ):

  • b = 2a \sin(\beta /2)= a \sqrt { 2-2 \cos \beta }
  • b = 2a \cos \alpha

Формулы длины равных сторон - (а):

  • a=\frac { b } { 2 \sin(\beta /2) } = \frac { b } { \sqrt { 2-2 \cos \beta } }
  • a=\frac { b } { 2 \cos\alpha }

  • L - высота=биссектриса=медиана
  • b - сторона (основание)
  • а - равные стороны
  • a - углы при основании
  • b - угол образованный равными сторонами

Формулы высоты, биссектрисы и медианы, через сторону и угол, (L ):

  • L = a sina
  • L = \frac { b } { 2 } *\tg\alpha
  • L = a \sqrt { (1 + \cos \beta)/2 } =a \cos (\beta)/2)

Формула высоты, биссектрисы и медианы, через стороны, (L ):

  • L = \sqrt { a^ { 2 } -b^ { 2 } /4 }

  • b - сторона (основание)
  • а - равные стороны
  • h - высота

Формула площади треугольника через высоту h и основание b, (S ):

S=\frac { 1 } { 2 } *bh

Свойства равнобедренного треугольника выражают следующие теоремы.

Теорема 1. В равнобедренном треугольнике углы при основании равны.

Теорема 2. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.

Теорема 3. В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.

Теорема 4. В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.

Докажем одну из них, например теорему 2.5.

Доказательство. Рассмотрим равнобедренный треугольник ABC с основанием ВС и докажем, что ∠ В = ∠ С. Пусть AD - биссектриса треугольника ABC (рис.1). Треугольники ABD и ACD равны по первому признаку равенства треугольников (АВ = АС по условию, AD - общая сторона, ∠ 1 = ∠ 2, так как AD - биссектриса). Из равенства этих треугольников следует, что ∠ В = ∠ С. Теорема доказана.

С использованием теоремы 1 устанавливается следующая теорема.

Теорема 5. Третий признак равенства треугольников. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны (рис. 2).

Замечание. Предложения, установленные в примерах 1 и 2, выражают свойства серединного перпендикуляра к отрезку. Из этих предложений следует, что серединные перпендикуляры к сторонам треугольника пересекаются в одной точке .

Пример 1. Доказать, что точка плоскости, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к этому отрезку.

Решение. Пусть точка М равноудалена от концов отрезка АВ (рис. 3), т. е. AM = ВМ.

Тогда Δ АМВ равнобедренный. Проведем через точку М и середину О отрезка АВ прямую р. Отрезок МО по построению есть медиана равнобедренного треугольника АМВ, а следовательно (теорема 3), и высота, т. е. прямая МО, есть серединный перпендикуляр к отрезку АВ.

Пример 2. Доказать, что каждая точка серединного перпендикуляра к отрезку равноудалена от его концов.

Решение. Пусть р - серединный перпендикуляр к отрезку АВ и точка О - середина отрезка АВ (см. рис. 3).

Рассмотрим произвольную точку М, лежащую на прямой р. Проведем отрезки AM и ВМ. Треугольники АОМ и ВОМ равны, так как у них углы при вершине О прямые, катет ОМ общий, а катет ОА равен катету ОВ по условию. Из равенства треугольников АОМ и ВОМ следует, что AM = ВМ.

Пример 3. В треугольнике ABC (см. рис. 4) АВ = 10 см, ВС = 9 см, АС = 7 см; в треугольнике DEF DE = 7 см, EF = 10 см, FD = 9 см.

Сравнить треугольники ABC и DEF. Найти соответственно равные углы.

Решение. Данные треугольники равны по третьему признаку. Соответственно равные углы: А и Е (лежат против равных сторон ВС и FD), В и F (лежат против равных сторон АС и DE), С и D (лежат против равных сторон АВ и EF).

Пример 4. На рисунке 5 АВ = DC, ВС = AD, ∠B = 100°.

Найти угол D.

Решение. Рассмотрим треугольники ABC и ADC. Они равны по третьему признаку (АВ = DC, ВС = AD по условию и сторона АС - общая). Из равенства этих треугольников следует, что ∠ В = ∠ D, но угол В равен 100°, значит, и угол D равен 100°.

Пример 5. В равнобедренном треугольнике ABC с основанием AC внешний угол при вершине C равен 123°. Найдите величину угла ABC . Ответ дайте в градусах.

Видео-решение.

Прежде всего, треугольник – это геометрическая фигура, которая образуется тремя, не лежащими на одной прямой, точками, которые соединены тремя отрезками. Чтобы найти, чему равна высота треугольника, необходимо, в первую очередь, определить его тип. Треугольники различаются величиной углов и количеством равных углов. По величине углов треугольник может быть остроугольным, тупоугольным и прямоугольным. По числу равных сторон выделяют равнобедренный, равносторонний и разносторонний треугольники. Высота – это перпендикуляр, который опущен на противоположную сторону треугольника из его вершины. Как найти высоту треугольника?

Как найти высоту равнобедренного треугольника

Для равнобедренного треугольника характерно равенство сторон и углов при его основании, поэтому проведенные к боковым сторонам высоты равнобедренного треугольника всегда равны друг другу. Также высота данного треугольника одновременно является медианой и биссектрисой. Соответственно, высота делит основание пополам. Рассматриваем получившийся прямоугольный треугольник и находим сторону, то есть высоту равнобедренного треугольника, посредством теоремы Пифагора. Воспользовавшись следующей формулой, вычисляем высоту: H = 1/2*√4*a 2 − b 2 , где: а - боковая сторона данного равнобедренного треугольника, b - основание данного равнобедренного треугольника.

Как найти высоту равностороннего треугольника

Треугольник с равными сторонами называется равносторонним. Высоту такого треугольника выводят из формулы высоты равнобедренного треугольника. Получается: H = √3/2*a, где a - сторона данного равностороннего треугольника.

Как найти высоту разностороннего треугольника

Разносторонним называют треугольник, у которого какие-либо две стороны не являются равными друг другу. В таком треугольнике все три высоты будут разными. Рассчитать длины высот можно при помощи формулы: H = sin60*a = a*(sgrt3)/2, где а - сторона треугольника или сначала посчитать площадь конкретного треугольника по формуле Герона, которая выглядит как: S = (p*(p-c)*(p-b)*(p-a))^1/2, где а, b, с – стороны разностороннего треугольника, а p – его полупериметр. Каждая высота = 2*площадь/сторону

Как найти высоту прямоугольного треугольника

Прямоугольный треугольник имеет один прямой угол. Высота, которая проходит к одному из катетов, в то же время является вторым катетом. Поэтому чтобы найти лежащие на катетах высоты, нужно воспользоваться изменённой формулой Пифагора: a = √(c 2 − b 2), где a, b - это катеты (a - катет, который необходимо найти), c - длина гипотенузы. Для того, чтобы найти вторую высоту надо поставить полученное значение a на место b. Для нахождения третьей, лежащей внутри треугольника, высоты применяется следующая формула: h = 2s/a, где h - высота прямоугольного треугольника, s - его площадь, a - длина стороны, к которой будет перпендикулярна высота.

Треугольник называется остроугольным в случае, если все его углы острые. В таком случае все три высоты располагаются внутри остроугольного треугольника. Треугольник называется тупоугольным при наличии одного тупого угла. Две высоты тупоугольного треугольника находятся вне треугольника и падают на продолжение сторон. Третья сторона находится внутри треугольника. Высота определяется при помощи все той же теоремы Пифагора.

Общие формулы, как вычисления высоты треугольника

  • Формула для нахождения высоты треугольника через стороны: H= 2/a √p*(p-c)*(p-b)*(p-b), где h - высота, которую нужно найти, а, b и c – стороны данного треугольника, p – его полупериметр, .
  • Формула для нахождения высоты треугольника через угол и сторону: H=b sin y = c sin ß
  • Формула для нахождения высоты треугольника через площадь и сторону: h = 2S/a, где a – это сторона треугольника, а h – построенная к стороне а высота.
  • Формула для нахождения высоты треугольника через радиус и стороны: H= bc/2R.

Так как высота равнобедренного треугольника, опущенная на основание, является одновременно и биссектрисой и медианой, следовательно, она делит основание и угол при вершине на две равные части, образуя прямоугольный треугольник со сторонами a и b/2. Из теоремы Пифагора в таком треугольнике можно найти само основание, а затем рассчитать все остальные возможные данные. (рис.88.2) h^2+(b/2)^2=a^2 b=√(a^2-h^2)/2

Чтобы вычислить периметр равнобедренного треугольника, надо к двум боковым сторонам прибавить основание или приведенный выше радикал через высоту. P=2a+b=2a+√(a^2-h^2)/2

Площадь равнобедренного треугольника через высоту и основание по определению вычисляется как половина их произведения. Заменив основание на соответствующее ему выражение, получаем площадь через высоту и боковую сторону равнобедренного треугольника. S=hb/2=(h√(a^2-h^2))/4

В равнобедренном треугольнике равны не только боковые стороны, но и углы при основании, а так как в сумме они дают всегда 180 градусов, то любой из углов можно найти, зная другой. Первый угол вычисляется по теореме косинусов, приведенной для равных боковых сторон, а второй можно найти через разность от 180. (рис.88.1) cos⁡α=(b^2+c^2-a^2)/2bc=(b^2+a^2-a^2)/2ba=b^2/2ba=b/2a cos⁡β=(a^2+a^2-b^2)/(2a^2)=(2a^2-b^2)/(2a^2) α=(180°-β)/2 β=180°-2α

Центральные медиана и биссектриса, опущенные на основание совпадают с высотой, а боковые медианы, высоты и биссектрисы можно найти по следующим формулам для равнобедренных треугольников. Чтобы вычислить их через высоту и боковую сторону, нужно заменить основание на эквивалентное ему выражение. (рис. 88.3) m_a=√(2a^2+2b^2-a^2)/2=√(a^2+2b^2)/2

Высота, опущенная на боковую сторону, через высоту, опущенную на основание и боковую сторону равнобедренного треугольника. (рис.88.8) h_a=(b√((4a^2-b^2)))/2a=(√(a^2-h^2) √((4a^2-a^2+h^2)))/2a=√((a^2-h^2)(3a^2+h^2))/2

Биссектрисы, направленные в боковые стороны, также могут быть выражены через боковую сторону и центральную высоту треугольника. (рис. 88.4) l_a=√(ab(2a+b)(a+b-a))/(a+b)=√(a(a^2-h^2)(2a+√(a^2-h^2)))/(a+√(a^2-h^2))

Средняя линия проводится параллельно любой стороне треугольника, соединяя середины боковых в ее отношении сторон. Таким образом, она всегда оказывается равна половине параллельной ей стороны. Вместо неизвестного основания в формулу можно подставить используемый радикал, чтобы найти среднюю линию через высоту и боковую сторону равнобедренного треугольника(рис. 88.5) M_b=b/2=√(a^2-h^2)/2 M_a=a/2

Радиус окружности, вписанной в равнобедренный треугольник, начинается от точки на пересечении биссектрис и уходит перпендикулярно в любую из сторон. Чтобы его найти через высоту и боковую сторону треугольника, надо заменить основание в формуле на радикал. (рис. 88.6) r=1/2 √(((a^2-h^2)(2a-√(a^2-h^2)))/(2a+√(a^2-h^2)))

Радиус окружности, описанной вокруг равнобедренного треугольника, также выводится из общей формулы путем подстановки радикала через высоту и боковую сторону вместо основания. (рис. 88.7) R=a^2/√(3a^2-h^2)

Выбор редакции
Зачастую количество возможных ответов превышает стандартные возможности маятника для биолокации или биолокационных рамок. Тогда на помощь...

Все мы знаем о парне, который устроился смотрителем/исследователем/блоггером на один из райских уголков Земли - этот человек является...

Если у вас возникла срочная необходимость внести платеж по кредиту, полученному в ОТП-банке, а вы не знаете, как это сделать, тогда этот...

Некоторые кошмары и вовсе леденят душу, а после утреннего пробуждения еще длительное время оставляют неприятный осадок на сердце....
Фарш пригодится для приготовления блинчиков, макарон по-флотски, фаршированного перца и других блюд. Но сначала его нужно пожарить, чтобы...
Время чтения: 2 мин. Каждый пользователь мобильной связи стремится снизить свои расходы на нее и периодически меняет тарифы на более...
Можно выделить несколько основных компонентов мировоззрения Нового времени. Теряется ощущение того, что есть подлинное существование...
Выбор подарков для друзей (сколько бы им лет не исполнялось) всегда требует ответственного подхода, но в возрасте от 15 до 25 лет каждый...
О том, как пить кровь в «Скайриме», задумываются многие игроки. Ведь при наличии соответствующей фракции (вампиры) должна быть и...
Новое