Витамин В1. Источники


Раздел 11.1

Понятие о полноценном пищевом рационе.

11.1.1. Полноценным называется рацион, соответствующий энергетическим потребностям человека и содержащий необходимое количество незаменимых пищевых веществ, обеспечивающих нормальный рост и развитие организма.

Факторы, влияющие на потребность организма в энергии и питательных веществах: пол, возраст и масса тела человека, его физическая активность, климатические условия, биохимические, иммунологические и морфологические особенности организма.

Все питательные вещества можно разделить на пять классов:

1. белки; 2. жиры; 3. углеводы; 4. витамины; 5. минеральные вещества.

Кроме того, любая диета должна содержать воду, как универсальный растворитель.

Незаменимыми компонентами пищевого рациона являются:

  1. незаменимые аминокислоты - валин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан;
  2. незаменимые (эссенциальные) жирные кислоты - линолевая, линоленовая, арахидоновая;
  3. водо- и жирорастворимые витамины;
  4. неорганические (минеральные) элементы - кальций, калий, натрий, хлор, медь, железо, хром, фтор, йод и другие.

11.1.2. Сбалансированный пищевой рацион. Диета, содержащая питательные вещества в соотношении, оптимальном для максимального удовлетворения пластических и энергетических потребностей организма человека, называется сбалансированным пищевым рационом. Считается, что самым благоприятным является соотношение белков, жиров и углеводов близкое к 1:1:4, при условии что общая калорийность рациона соответствует энергозатратам данного человека. Так, для студента-юноши весом 60 кг, энергозатраты составляют в среднем 2900 ккал в сутки и рацион должен содержать: 80-100 г белков, 90 г жиров, 300 - 400 г углеводов.

Раздел 11.2 Характеристика пищевых белков.

11.2.1. Биологическая роль пищевых белков заключается в том, что они служат источником незаменимых и заменимых аминокислот. Аминокислоты используются организмом для синтеза собственных белков; в качестве предшественников небелковых азотистых веществ (гормонов, пуринов, порфиринов и др.); как источник энергии (окисление 1 г белков даёт примерно 4 ккал энергии).

Пищевые белки делятся на полноценные и неполноценные.

Полноценные пищевые белки - животного происхождения, содержат в своём составе все аминокислоты в необходимых пропорциях и хорошо усваиваются организмом.

Неполноценные белки - растительного происхождения, не содержат, или содержат в недостаточном количестве одну или несколько незаменимых аминокислот. Так, зерновые культуры, дефицитны по лизину, метионину, треонину; в белке картофеля мало метионина и цистеина. Для получения полноценных по белку пищевых рационов, следует комбинировать растительные белки, дополняющие друг друга по аминокислотному составу, например, кукурузу и бобы.

Суточная потребность: не менее 50 г в сутки, в среднем 80-100 г.

11.2.2. Белковая недостаточность в детском возрасте вызывает: 1. снижение сопротивляемости организма инфекциям; 2. остановку роста вследствие нарушения синтеза факторов роста; 3. энергетическую недостаточность организма (истощение углеводных и жировых депо, катаболизм тканевых белков); 4. потерю массы тела - гипотрофию. При белковом голодании наблюдаются отеки, которые возникают вследствие снижения содержания белков в крови (гипоальбуминемии ) и нарушения распределения воды между кровью и тканями.

Раздел 11.3 Характеристика пищевых жиров.

11.3.1. В состав пищевых жиров входят в, основном, триацилглицеролы (98%), фосфолипиды и холестерол. Триацилглицеролы животного происхождения содержат много насыщенных жирных кислот и имеют твёрдую консистенцию. Растительные жиры содержат больше ненасыщенных жирных кислот и имеют жидкую консистенцию (масла).

Биологическая роль: 1. являются одним из основных источников энергии; 2. служат источником незаменимых полиненасыщенных жирных кислот; 3. способствуют всасыванию из кишечника жирорастворимых витаминов. Полиненасыщенные жирные кислоты необходимы организму для построения фосфолипидов, формирующих основу всех мембранных структур клетки и липопротеинов крови. Кроме того, линолевая кислота используется для синтеза арахидоновой кислоты, служащей предшественником простагландинов, простациклинов, тромбоксанов и лейкотриенов.

Суточная потребность: 90-100 г, из них 30% должны приходиться на растительные масла. Пищевая ценность растительных жиров выше, чем животных, так как при равном энергетическом эффекте - 9 ккал на 1 г, они содержат больше незаменимых жирных кислот.

11.3.2. Нарушение соотношения доли растительных и животных жиров в рационе приводит к изменению соотношения в крови различных классов липопротеинов и, как следствие, к ишемической болезни сердца и атеросклерозу.

Раздел 11.4

Характеристика пищевых углеводов.

11.4.1. Пищевые углеводы по способности усваиваться организмом человека делятся на две группы:

    усвояемые: глюкоза, фруктоза, сахароза, лактоза, крахмал;

    неусвояемые: целлюлоза (клетчатка), гемицеллюлоза, пектины.

Биологическая роль усвояемых углеводов: 1. являются основным источником энергии для человека (окисление 1 г дает 4 ккал); 2. служат предшественниками в синтезе многих биомолекул - гетерополисахаридов, гликолипидов, нуклеиновых кислот.

Биологическая роль неусвояемых углеводов: клетчатка влияет на перистальтику кишечника, способствует выведению холестерола, препятствует развитию ожирения и желчнокаменной болезни.

Суточная потребность: 300-400 г, из них - легкоусвояемых углеводов (фруктозы, сахарозы, лактозы) - 50-100 г, клетчатки 25 г, остальное - крахмал.

11.4.2. Избыток легкоусвояемых углеводов в рационе способствует развитию таких заболеваний как ожирение, сахарный диабет, кариес зубов. Недостаток балластных веществ (клетчатки) способствует развитию рака толстой кишки.

Раздел 11.5

Витамины.

11.5.1. Витамины - низкомолекулярные органические соединения, поступающие в организм с пищей и обеспечивающие нормальное протекание биохимических и физиологических процессов. Витамины не включаются в структуру тканей и не используются в качестве источника энергии.

11.5.2. Классификация витаминов. Витамины делятся на две группы: витамины, растворимые в воде и витамины, растворимые в жирах. Водорастворимые витамины - В1, В2 , В6 , В12 , РР, Н, С, фолиевая кислота, пантотеновая кислота. Жирорастворимые витамины - А, Д, Е, К.

Для каждого витамина, кроме буквенного обозначения, существует химическое и физиологическое название. Физиологическое название, как правило, состоит из приставки анти- и названия заболевания, развитие которого предупреждает витамин (например, витамин Н - антисеборрейный).

11.5.3. Провитамины. Некоторые витамины могут синтезироваться непосредственно в организме человека. Соединения, служащие предшественниками для синтеза витаминов в клетках организма человека, называются провитаминами . Например, провитамином витамина А является каротин, витамина D2 - эргостерол, D3 - 7-дегидрохолестерол.

11.5.4. Биологическая роль витаминов. Витамины, попадая в организм, превращаются в свою активную форму, которая и принимает непосредственное участие в биохимических процессах.Биологическая роль водорастворимых витаминов заключается в том, что они входят в состав коферментов , участвующих в метаболизме белков, жиров и углеводов в клетках организма человека.

В таблице 1 приведены примеры витаминов и их биологическая роль.

Таблица 1.

Коферментные функции водорастворимых витаминов.

Витамин Кофермент Тип катализируемой реакции
В1 - тиамин Тиаминдифосфат (ТДФ) Окислительное декарбоксилирование α-кетокислот
В2 - рибофлавин Флавинмононуклеотид (ФМН) и флавинадениндинуклеотид (ФАД)
В3 - пантотеновая кислота Кофермент А (НS-КоА) Перенос ацильных групп
В6 - пиридоксин Пиридоксальфосфат (ПФ) Трансаминирование и декарбоксилирование аминокислот
В9 - фолиевая кислота Тетрагидрофолиевая кислота (ТГФК) Перенос одноуглеродных групп
В12 - цианкобаламин Метилкобаламин и дезоксиаденозилкобаламин Трансметилирование
РР - никотинамид Никотинамидадениндинуклеотид(фосфат)- НАД+ и НАДФ+ Окислительно-восстановительные

11.5.5. Антивитамины. Термином антивитамины обозначают любые вещества, вызывающие снижение или полную потерю биологической активности витаминов. По механизму действия их делят на две группы: 1. антивитамины, имеющие структуру, сходную со строением витамина и конкурирующие с ним за включение в кофермент; 2. антивитамины, вызывающие химическую модификацию витамина.

Примерами могут служить: тиаминаза (антивитамин В1 ), акрихин (антивитамин В2 ), изониазид (антивитамин РР), дикумарол (антивитамин К).

11.5.6. Болезни нерационального потребления витаминов. Для обеспечения нормального протекания биохимических процессов, в организме человека должен поддерживаться определённый уровень концентрации витаминов. При изменении этого уровня развиваются заболевания с симптомами, харктерными для каждого витамина.

Гипервитаминозы - заболевания, вызванные избыточным содержанием витаминов в организме. Характерны для жирорастворимых витаминов, способных накапливаться в клетках печени. Чаще всего встречаются гипервитаминозы А и D, связанные с передозировкой их лекарственных препаратов. Гипервитаминоз А характеризуется общими симптомами отравления: сильными головными болями, тошнотой, слабостью. Гипервитаминоз D сопровождается деминерализацией костей, кальцинацией мягких тканей, образованием камней в почках.

Гиповитаминозы - заболевания , вызванные недостатком витаминов в организме. Первичные гиповитаминозы связаны с нарушением процессов поступления витаминов в организм при: 1. недостатке витаминов в пище; 2. ускоренном распаде витаминов в кишечнике под действием патогенной микрофлоры; 3. нарушении синтеза витаминов кишечной микрофлорой при дисбактериозе; 4. нарушении всасывания витаминов; 5. приеме лекарственных препаратов - антивитаминов. Вторичные гиповитаминозы связаны с нарушением процессов превращения витаминов в их активные формы в клетках организма человека. Причиной могут служить генетические дефекты или нарушения биохимических процессов при различных заболеваниях органов и тканей.

Авитаминозы - заболевания , вызванные полным отсутствием витамина в организме.

Раздел 11.5.5

Строение и биологические функции жирорастворимых витаминов.

Витамин А - ретинол.

Активная форма: цис-ретиналь.
Биологическая роль:
1. контролирует рост и дифференцировку быстро пролиферирующих тканей (эмбриональной, хрящевой, костной, эпителиальной); 2. участвует в фотохимическом акте зрения.
Суточная потребность:
0,5-2,0 мг.
Основные пищевые источники:
сливочное масло, печень животных и рыб, b-каротин в красных плодах.

Участие витамина А в механизме сумеречного зрения. В процессе светоощущения главная роль принадлежит пигменту родопсину - сложному белку, состоящему из белка опсина и простетическойгруппы - цис-ретиналя . Под действием света цис-ретиналь света превращается в изомер - транс-ретиналь, что приводит к разрушению пигмента родопсина и возникновению нервного импульса. Восстановление пигмента происходит по схеме:

Процесс изомеризации транс-ретинола в сетчатке глаза протекает очень медленно. Основное его количество поступает в кровь, затем в печень, где и происходит быстрое превращение транс-ретинола в цис-ретинол, который попадает в кровь и поглощается сетчаткой глаза. Процесс лимитируется запасом в печени транс-ретинола (витамина А).

Гиповитаминоз: нарушение темновой адаптации зрения (ночная слепота) у взрослых; у детей - остановка роста, ороговение эпителия всех органов - гиперкератоз , сухость роговицы глаза - ксерофтальмия , размягчение роговицы под действием микрофлоры - кератомаляция .

Витамин D 3 - холекальциферол.

Активная форма: 1,25-дигидроксихолекальциферол, кальцитриол.
Биологическая роль:
1. регуляция всасывания ионов кальция и фосфатов в кишечнике; 2. реабсорбция ионов кальция в почечных канальцах; 3. мобилизация ионов кальция из костей.
Суточная потребность:
10-15 мкг (500-1000 МЕ).
Основные пищевые источники:
печень животных и рыб, яйца, молоко, сливочное масло.

Синтез витамина D3 и его активных форм в тканях человека. Предшественником (провитамином) витамина D3 в организме человека служит 7-дегидрохолестерол, который при действиина кожу ультрафиолетового излучения, переходит в холекальциферол.


Образование активной формы витамина происходит последовательно в печени и почках путём гидроксилирования по 1 и 25 углеродным атомам . Образующийся 1,25-дигидроксихолекальциферол обладает гормональной активностью (кальцитриол). Тканями-мишенями для него являются кишечник, почки, кости. В эпителии кишечника и почечных канальцах кальцитриол индуцирует синтез Са-связывающего белка, что способствует всасыванию ионов Са2+ из пищи и реабсорбции их почками. В костной ткани угнетает синтез коллагена, уменьшает Са- связывающую способность, что приводит к мобилизации кальция из костей.

Гиповитаминоз: у детей - рахит . Симптомы: 1. снижение мышечного тонуса; 2. деформация костей черепа, груди, позвоночника, нижних конечностей. У взрослых - остеопороз - деминерализация костей.
При нарушении образования активных форм витамина D3 (например, при поражении печени и почек) развивается D-резистентное рахитоподобное состояние.

Витамин К - филлохинон.

Активная форма: неизвестна.
Биологическая роль
- участие в синтезе белковых факторов свёртывания крови: II (протромбин), VII (проконвертин), IX (Кристмас-фактор), и X (фактор Прауэра-Стюарта).
Суточная потребность:
1 мг.
Основные пищевые источники:
синтезируется микрофлорой кишечника.
Гиповитаминоз
- паренхиматозные и капиллярные кровотечения.

Витамин Е - токоферол.

Активная форма: неизвестна.
Биологическая роль
- природный антиоксидант , тормозит пероксидное окисление липидов клеточных мембран.
Суточная потребность:
5 мг.
Основные пищевые источники:
растительные масла.
Гиповитаминоз
у человека - гемолитическая анемия . У животных - мышечная дистрофия, дегенерация спинного мозга, атрофия семенников, пероксидный гемолиз эритроцитов.

Раздел 11.5. 6

Строение и биологические функции водорастворимых витаминов.

Витамин В1 - тиамин.

Активная форма: кофермент тиаминдифосфат (ТДФ).

Биологическая роль: участвует в реакциях окислительного декарбоксилирования пирувата и α-кетоглутарата.

Суточная потребность: 1-2 мг.

Основные пищевые источники: мука грубого помола, бобовые, мясо, рыба.

Гиповитаминоз: болезнь “бери-бери” . Симптомы: 1. периферические невриты; 2. мышечная слабость; 3. дискоординация движений; 4. увеличение размеров сердца; 5. повышение уровня пирувата в крови. Основная причина смертности у больных бери-бери - сердечная недостаточность.

Витамин В2 - рибофлавин.

Активные формы : коферменты флавинмононуклеотид (ФМН) и флавинадениндинуклеотид (ФАД).

Биологическая роль: участвует в окислительно-восстановительных реакциях. Например: 1. перенос электронов в дыхательной и монооксигеназной цепях; 2. окисление сукцината; 3. окисление высших жирных кислот.

Суточная потребность: 1,5 - 3,0 мг.

Основные пищевые источники: молоко, печень, мясо, яйца, жёлтые овощи.

Гиповитаминоз часто встречается у беременных, детей, у людей в состоянии стресса. Симптомы: 1. воспаление сосочков языка -глоссит ; 2. растрескивание губ и уголков рта - ангулярный стоматит ; 3. помутнение хрусталика - катаракта ; 4. воспаление роговицы глаза - кератит .

Витамин В6 - пиридоксин.

Активная форма: кофермент пиридоксальфосфат.

Биологическая роль: - участвует в реакциях: 1. трансаминирования; 2. Декарбоксилирования аминокислот; 3. синтеза никотинамида из триптофана; 4. синтеза δ-аминолевулиновой кислоты (синтез гема).

Суточная потребность: 2 мг.

Основные пищевые источники: хлеб, горох, фасоль, картофель, мясо.

Гиповитаминоз: недостаточность витамина не вызывает специфических симптомов.

Витамин РР - никотинамид (ниацин).

Активная форма: коферменты никотинамидадениндинуклеотид (НАД) и никотинамидадениндинук-леотидфосфат (НАДФ).

Биологическая роль: входит в состав дегидрогеназ. Например: 1. пируватдегидрогеназный комплекс; 2. глюкозо-6-фосфатдегидрогеназа; 3. глутаматдегидрогеназа; 4. β-гидрокси,β-метилглутарил-КоА-редуктаза и многие другие.

Суточная потребность: 15 - 20 мг.

Основные пищевые источники: мясо, рыба,горох, бобы, орехи.

Гиповитаминоз: болезнь пеллагра . Симптомы:

1. дерматит - поражение кожи; 2. диаррея - поражение слизистой желудочно-кишечного тракта; 3. деменция - слабоумие. Поскольку витамин РР может синтезироваться в организме из аминокислоты триптофан, пеллагру можно лечить, вводя в диету дополнительное количество полноценных животных белков. 60 мг триптофана эквивалентны 1 мг никотинамида.

Витамин В9 - фолиевая кислота .


Активная форма:
кофермент тетрагидрофолиевая кислота.

Биологическая роль: участвует в реакциях переноса одноуглеродных групп при синтезе: 1. пуриновых нуклеотидов; 2. тимидилового нуклеотида; 3. метионина из гомоцистеина; 4. серина и глицина.

Суточная потребность: 1 - 2,2 мг.

Основные пищевые источники: зелёные листья растений, дрожжи.

Гиповитаминоз: макроцитарная анемия.

Витамин В12 - цианкобаламин .

Активная форма: коферменты метилкобаламин и дезоксиаденозилкобаламин. Имеют сложную структуру, в центре которой находится атом кобальта (Со+ ), соединённый с четырьмя пиррольными кольцами, образующими корриновое ядро .

Биологическая роль: участвует в реакциях: 1. трансметилирования; 2. обмена серосодержащих аминокислот; 3. образования коферментных форм фолиевой кислоты.

Суточная потребность: 0,003 мг.

Основные пищевые источники: любые продукты животного происхождения.

Гиповитаминоз : мегалобластическая анемия , развивающаяся при нарушении всасывания витамина в кишечнике. Для всасывания витамина В12 в кишечнике, необходим специальный белокгастромукопротеин (транскоррин), получивший название - внутренний фактор Касла .

Этот белок вырабатывается в желудке, связывает витамин В12 (внешний фактор Касла) и образовавшийся комплекс всасывается в кишечнике. Любые причины, приводящие к нарушению выработки желудочного гликопротеина (например, органические поражения желудка, резекция желудка) приводят к гиповитаминозу В12 .

Витамин С - аскорбиновая кислота.


Активная форма - неизвестна.
Биологическая роль
: кофактор реакций гидроксилирования. Например, в реакциях синтеза: 1. серотонина; 2. оксилизина и оксипролина в коллагене; 3. гомогентизиновой кислоты. Кроме того, способствует поступлению железа в кровь из кишечника и высвобождению его из ферритина. Является антиоксидантом.
Суточная потребность:
50-100 мг.
Гиповитаминоз
- болезнь цинга (скорбут). Симптомы: 1. боли в суставах; 2. точечные кровоизлияния - петехии ; 3. кровоточивость дёсен; 4. расшатывание зубов; 5. анемия; 6. быстрая утомляемость.

Витамин Н - биотин.

Активная форма: биоцитин.

Биологическая роль - участвует в реакциях карбоксилирования при синтезе: 1. пуриновых нуклеотидов; 2. оксалоацетата; 3. малонил-КоА.

Суточная потребность: 0,26 мг.

Основные пищевые источники: молоко, яичный желток, печень, томаты, шпинат.

Гиповитаминоз: так как витамин синтезируется микрофлорой кишечника, то недостаточность встречается редко. Проявляется в виде специфических дерматитов волосистой части

Раздел 11.6

Минеральные (неорганические) вещества.

11.6.1. Кроме шести главных элементов - С, Н, О, Р, N, S, из которых состоят все органические молекулы, человеку необходимо получать ещё около 20 химических элементов. В зависимости от количества, в каком они должны поступать в организм, минеральные вещества делятся на: макроэлементы - кальций, хлор, магний, калий, натрий - суточная потребность более 100 мг имикроэлементы - железо, марганец, медь, йод, фтор, молибден, селен, цинк и др. - суточная потребность - несколько миллиграммов.

11.6.2. Биологическая роль минеральных веществ: 1. являются структурными компонентами тканей (кальций, фтор); 2. обеспечивают водно-солевой баланс (натрий, калий); 3. являются простетической группой ферментов, входят в состав активных центров, стабилизируют структуру ферментов и фермент-субстратных комплексов (магний, железо, медь); 4. участвуют в передаче нервных импульсов (кальций); 5. участвуют в гормональной регуляции обмена веществ (иод входит в состав гормонов щитовидной железы, цинк - в состав инсулина).

11.6.3. Дефицит микроэлементов в воде и пище может приводить к развитию заболеваний. Например, недостаток железа и меди может вызывать анемию, недостаток фтора способствовать возникновению кариеса, при нехватке йода в пище и воде развивается эндемический зоб.

Раздел 11.7

Химические и биологические загрязнители пищи.

11.7.1. Химические загрязнители пищи - продукты технологической деятельности человека. Они попадают в организм с растительной пищей, молоком и мясом животных, выращенных в экологически неблагополучных регионах, а также с консервированными продуктами, приготовленными с нарушением технологии. К химическим загрязнителям относят 1. радиоактивные изотопы; 2. ионы тяжёлых металлов; 3. органические продукты химической промышленности; 4. сельскохозяйственные яды; 5. пищевые добавки. Большинство химических загрязнителей могут накапливаться в организме человека и нарушать обмен веществ.

Ионы тяжёлых металлов : ртуть, свинец, медь, олово, цинк, железо - взаимодействуют с атомами азота нуклеиновых кислот и серы в составе белков, вызывают нарушение функционирования этих макромолекул. При отравлении свинцом отмечаются повышенная утомляемость, бессонница, позднее - расстройства нервной системы, поражение головного мозга. У детей накопление свинца в тканях вызывает снижение умственных способностей.

Нитраты попадают в организм с растительной пищей и водой, в кишечнике восстанавливаются до нитритов , которые окисляют гемоглобин (Fe2+ ) в метгемоглобин (Fe3+ ). При отравлении нитритами появляются одышка, головокружение, цианоз , метгемоглобинемия . Кроме того, нитриты, взаимодействуют с аминами (содержащимися в продуктах) образуют нитрозамины - вещества, вызывающие возникновение мутаций и развитие раковых опухолей.

Фенолы , содержащиеся в стоках металлургических предприятий, в питьевой воде в присутствии хлора и на свету способны превращаться в диоксины. Это липофильные соединения, легко встраивающиеся в клеточные мембраны, поражают иммунокомпетентные клетки, вызывают врожденные уродства у детей и опухолевые заболевания.

11.7.2. Биологические загрязнители пищи: токсичные вещества, продуцируемые бактериями, низшими грибами, одноклеточными водорослями; биологически активные соединения, содержащиеся в высших растениях.

Микотоксины - продуцируются микроскопическими грибами - плесенью. Многие из этих веществ способны накапливаться в организме и вызывать при этом эмбриотоксический, мутагенный и канцерогенный эффекты. Например, афлатоксин , вырабатывается грибками, поражающими арахис и кукурузу, является сильнейшим печеночным ядом с выраженным канцерогенным эффектом.

Альготоксины - синтезируются низшими водорослями. Отравление происходит при купании в водоёмах, зараженных такими водорослями, и поедании обитающей в них рыбы. Например,анатоксин , вызывает блокирование нервно-мышечной передачи, что приводит к параличу скелетной и дыхательной мускулатуры.

Растительные гликозиды - могут содержаться в продуктах в дозах, сопоставимых с фармакологическими. Соланин - образуется в клубнях картофеля под действием солнечного света. Он обладает раздражающим действием на слизистые, угнетает деятельность центральной нервной системы.

Витамины. История букв с цифрами, или Что такое провитамин В5

А.Е. Любарев

Так получилось, что терминология витаминов довольно запутана. Многие, наверное, задумывались: почему есть витамины В6 и В12 , но ничего не слышно про витамины В4 , В7 , В8 , В10 и В11 ? Почему есть витамины К и Р, но не известен, скажем, витамин L или N? Самый простой ответ - так сложилось исторически. Но можно попробовать разобраться, почему же сложилось именно так.

Открытие витаминов

Впервые вывод о существовании неизвестных веществ, абсолютно необходимых для жизни, сделал Николай Лунин в 1880 г. В своей диссертационной (по современным меркам - дипломной) работе, выполненной в Дерптском (ныне Тартуском) университете, он обнаружил, что мыши не могут выжить, питаясь искусственной смесью из белка, жира, сахара и минеральных солей.

Вывод Лунина не получил признания, даже его руководитель Г.Бунге отнесся к этой идее скептически. И его можно понять. Еще в XIV в. английский философ Уильям Оккам провозгласил: "Сущности не следует умножать без необходимости". И этот принцип, известный как "бритва Оккама", ученые взяли на вооружение.

Вот и в случае с открытием Лунина научный мир не спешил признавать существование каких-то неизвестных веществ. Ученые вначале хотели убедиться в том, что смерть мышей не обусловлена нехваткой веществ уже известных. Предположений было много: нарушение "нормального соединения органических и неорганических частей", неравноценность молочного и тростникового сахара, недостаток органических соединений фосфора и т.п.

И все-таки Лунин оказался прав! Его работа не была забыта, напротив, она стимулировала дальнейшие исследования в этом направлении. Но уровень экспериментального мастерства Лунина долгое время не был превзойден. Его последователи часто получали ошибочные результаты вследствие либо недостаточной очистки веществ, либо копрофагии (поедание собственного кала), либо недостаточной продолжительности опытов.

Каждая мелочь имела значение. Например, Лунин брал не молочный, а тростниковый сахар. Критики обращали на это внимание: искусственная смесь Лунина не совсем адекватна молоку. Но те, кто использовал молочный сахар, не учитывали, что он недостаточно очищен: впоследствии выяснилось, что в нем содержатся в виде примеси витамины группы В.

Потребовалось тридцать лет для того, чтобы убедиться, что неудачи в кормлении животных искусственными смесями не связаны с отсутствием в пище ни нуклеиновых кислот, ни фосфолипидов, ни холестерина, ни незаменимых аминокислот, ни органических комплексов железа. И вывод о том, что в продуктах питания содержатся в очень малых количествах вещества, абсолютно необходимые для жизни, становился все более очевидным.

В то время медики пытались понять причины таких распространенных заболеваний, как цинга, бери-бери и пеллагра. Неоднократно высказывались предположения, что эти болезни связаны с неполноценным питанием, но доказать эту точку зрения было невозможно без экспериментальной проверки на животных.

В 1889 г. голландский врач Х.Эйкман обнаружил у кур заболевание, сходное с бери-бери. Болезнь вызывалась при питании полированным рисом. Через несколько лет норвежские ученые сумели вызвать у морских свинок экспериментальную цингу и показать, что она также связана с недостатком питания.

К 1910 г. был накоплен достаточный материал для открытия витаминов. И в 1911-1913 гг. произошел прорыв в этом направлении. За очень короткое время появилось большое число работ, заложивших основы учения о витаминах.

В 1910 г. директор Листеровского института в Лондоне Ч.Дж. Мартин поручил молодому поляку К.Функу заняться выделением вещества, которое предотвращает от бери-бери. Мартин полагал, что это - какая-то незаменимая аминокислота. Но Функ, проанализировав литературу и проделав ряд предварительных опытов, пришел к выводу, что активным веществом является простое азотсодержащее органическое основание (амин), и применил методы исследования, разработанные для таких соединений.

В 1911 г. Функ сделал первое сообщение о выделении кристаллического активного вещества из рисовых отрубей. Затем он получил аналогичный препарат также из дрожжей и некоторых других источников. Год спустя подобный препарат получили и японские ученые. Как выяснилось впоследствии, эти препараты не были индивидуальным химическим веществом, но проявляли активность на голубях в дозах 4-5 мг.

Функ назвал открытое им вещество "витамин" (vitamine ): от латинского vita - жизнь и "амин" (amine ) - класс химических соединений, к которому принадлежит это вещество. Большая заслуга Функа состоит также в том, что он обобщил данные по таким болезням, как бери-бери, цинга, пеллагра и рахит, и заявил, что каждая из этих болезней вызывается отсутствием специфического вещества. Он считал, что эти вещества составляют особую химическую группу азотистых соединений, поэтому дал им всем обобщающее название "витамины". Статья Функа под названием "Этиология болезней недостаточности" (The etiology of the deficiency diseases ) вышла в июне 1912 г. Два года спустя Функ издал монографию под названием "Витамины".

Почти одновременно с вышеупомянутой статьей Функа, в июле 1912 г., была опубликована большая работа известного английского биохимика Ф.Г. Хопкинса. В тщательно проведенном эксперименте на крысах он доказал, что для роста животных необходимы вещества, присутствующие в молоке в небольших количествах, при этом их действие не связано с улучшением усвояемости основных компонентов пищи, т.е. они имеют самостоятельное значение. Функ знал о работе Хопкинса еще до выхода этой статьи, в своей статье он предполагал, что открытые Хопкинсом факторы роста также являются витаминами.

Дальнейшие успехи в развитии учения о витаминах связаны в первую очередь с работами двух групп американских ученых: Т.Б. Осборна-Л.В. Менделя и Э.В. Мак-Коллума-М.Дэвис. В 1913 г. обе группы пришли к выводу, что в некоторых жирах (молочном, рыбьем, жире яичного желтка) содержится фактор, необходимый для роста. Два года спустя, под влиянием работ Функа и Хопкинса и избавившись от экспериментальных ошибок, они убедились в существовании еще одного фактора - водорастворимого. Жирорастворимый фактор не содержал азот, поэтому Мак-Коллум не стал использовать термин "витамин". Он предложил называть активные вещества "жирорастворимый фактор А" и "водорастворимый фактор В".

Вскоре выяснилось, что "фактор В" и препарат, полученный Функом, взаимозаменяемы, а "фактор А" предотвращает ксерофтальмию и рахит. Родство витаминов и факторов роста стало очевидным. Был получен еще один фактор - противоцинготный. Возникла необходимость упорядочить номенклатуру.

В 1920 г. Дж.Дреммонд скомбинировал термины Функа и Мак-Коллума. Для того, чтобы не привязывать витамины к определенной химической группе, он предложил опустить концевое "e", и с тех пор этот термин на языках, использующих латинский алфавит, пишется vitamin . Дреммонд также решил сохранить буквенное обозначение Мак-Коллума: в результате появились названия "витамин А" и "витамин В". Противоцинготный фактор получил имя "витамин С".

Спор о приоритете

Споры о приоритете возникли давно и, пожалуй, не утихли до сих пор. Кого же считать первооткрывателем витаминов? Наверное, так ставить вопрос нельзя. Многие ученые внесли свой вклад в это открытие. И все же наиболее весомым, по-видимому, можно считать вклад Н.И. Лунина, Х.Эйкмана, К.Функа и Ф.Г. Хопкинса.

В 1921 г. Хопкинс был удостоен медали Чендлера. В своей речи при вручении медали он признал себя пионером в открытии витаминов. И хотя Функ попытался оспорить приоритет Хопкинса, Нобелевской премии по физиологии и медицине за открытие витаминов в 1929 г. были удостоены только Хопкинс и Эйкман. Впрочем, в своей Нобелевской речи Хопкинс признал, что первые экспериментальные доказательства существования витаминов были получены Луниным.

А что же Лунин? Ему не пришлось продолжить исследовательскую работу. Он стал врачом-педиатром и в этом качестве приобрел известность и авторитет. Журнал "Педиатрия" в 1929 г. посвятил 50-летнему юбилею врачебной, общественной, научной и преподавательской деятельности Н.И. Лунина отдельный номер, целиком составленный из статей его учеников. Примечательно, что в среде педиатров было хорошо известно, какое выдающееся открытие сделал их коллега в начале своего творческого пути. Но советские витаминологи личностью Лунина не интересовались: организаторы 1-й Всесоюзной конференции по витаминам, проходившей в Ленинграде в 1934 г., не знали, что Лунин в то время жил и работал в том же городе, и не пригласили его принять участие в работе конференции.

В чем тут дело? В отсутствии интереса ко всему, что было до революции? Или в том, что Лунина не считали соотечественником? Среди витаминологов господствовало убеждение, что Лунин выполнил свою работу в Базеле, где впоследствии преподавал его руководитель Г.Бунге. Впрочем, Тарту в 20-30-е гг. тоже был "заграницей".

Зато в 40-е гг. все перевернулось. Утверждение приоритета российских ученых во всех областях науки стало государственной политикой. И тут сразу выяснилось, что Лунин сделал свое открытие не в заграничном Базеле, а в "отечественном" Тарту, и вообще, что его открытие замалчивалось. Появился десяток статей в защиту приоритета российской витаминологии. Некоторые авторы договаривались до того, что Функ и Хопкинс вообще не внесли ничего нового по сравнению с Луниным. Разумеется, все это издержки того времени. Все же, не умаляя роли других исследователей, важно отметить, что Лунин действительно внес выдающийся вклад в открытие витаминов.

Витаминов оказалось много

Но вернемся к истории исследования витаминов. В 20-е гг. с разработкой способов получения экспериментальных авитаминозов и совершенствованием методов очистки витаминов постепенно становилось ясно, что витаминов не два и не три, а гораздо больше.

Вначале выяснили, что "витамин А" на самом деле является смесью двух соединений, одно из которых предотвращает ксерофтальмию, а другое - рахит. За первым сохранилась буква А, а второе назвали "витамин D". Затем был открыт витамин Е, предотвращавший бесплодие у крыс, растущих на искусственной диете. Тогда же стало ясно, что и "витамин В" состоит как минимум из двух витаминов. Вот тут и начинается первая путаница: одни исследователи обозначили новый витамин, предотвращавший пеллагру у крыс и стимулировавший рост животных, буквой G, другие предпочли называть этот фактор "витамином В2 ", а фактор, предотвращавший бери-бери, - "витамином В1 ".

Термины "В1 " и "В2 " прижились. Фактор роста сохранил название "В2 ", а фактор, предотвращающий пеллагру крыс, стал "В6 ". Почему же использовали индекс 6? Разумеется, потому, что за это время появились "В3 ", "В4 " и "В5 ". Куда же они потом делись?

Название "В3 " получило в 1928 г. новое вещество, найденное в дрожжах и предотвращавшее дерматит у цыплят. Об этом веществе долгое время не было известно практически ничего, а десять лет спустя выяснилось, что оно идентично пантотеновой кислоте, которая изучалась как фактор роста дрожжей. В результате для этого витамина осталось название "пантотеновая ксилота".

В 1929 г. в дрожжах был обнаружен фактор, который поспешили назвать "витамином В4 ". Вскоре выяснилось, что этот фактор - не витамин, а смесь трех аминокислот (аргинина, глицина и цистина).

В 1930 г. появился термин "витамин В5 ": такое название было предложено для фактора, который впоследствии оказался смесью двух витаминов. Один из них - никотиновая кислота, которую изредка продолжают называть "витамин В5 ", другой - витамин В6 .

И в последующие годы продолжался тот же процесс: время от времени появлялись сообщения об открытиях новых факторов, и к букве "В" добавлялся новый индекс. Но повезло только индексу 12. Соединения с другими индексами либо оказались не витаминами или уже известными витаминами, либо их действие не получило подтверждения, либо название не получило широкого распространения.

А вскоре буквенная классификация витаминов утратила свое значение. В 30-е гг. за витамины по-настоящему взялись химики. И если в 1930 г. о химической природе витаминов практически ничего не было известно, то к 1940 г. этот вопрос был в основном решен.

Химики дали всем витаминам тривиальные химические названия. И эти названия постепенно стали вытеснять "буквы с цифрами": аскорбиновая кислота, токоферол, рибофлавин, никотиновая кислота и др. - эти термины стали общеупотребительными. Впрочем, многие биологи медики сохранили верность "буквам".

В 1976 г. Международный союз нутриционистов (от англ. nutrition - питание) рекомендовал сохранять буквенные обозначения в группе В только для витаминов В6 и В12 (по-видимому, из-за того, что эти витамины имеют несколько форм). Для остальных рекомендованы тривиальные названия веществ: тиамин, рибофлавин, пантотеновая кислота, биотин - или обобщающие термины: ниацин, фолацин .

Что такое пантенол

Пантенол является производным пантотеновой кислоты. В его молекуле кислотная группа заменена на спиртовую. В организме животных и человека пантенол легко превращается в пантотеновую кислоту, поэтому их витаминная активность сопоставима. Зато микроорганизмы не способны окислять пантенол, так что для микробов это вещество - яд.

Пантенол обладает важным достоинством: он очень хорошо всасывается при нанесении на кожу. Именно поэтому этот препарат так широко используется в дерматологии и косметике.

Но все-таки почему пантенол называют провитамином В5 ? Провитаминами принято называть природные вещества, которые в организме животных и человека превращаются в витамины. Так, b -каротин является провитамином А, эргостерин и 7-дегидрохолестерин - провитаминами D. Пантенол также способен превращаться в витамин - пантотеновую кислоту. Правда, в отличие от каротина и эргостерина пантенол - не природное вещество, а синтетический продукт.

А почему же "В5 "? Оказывается, среди множества названий, которых удостаивалась в 30-е гг. пантотеновая кислота, было и такое. И у этого названия остались приверженцы - еще в 70-е гг. оно встречалось в статьях французских медиков. Что ж, Франция, как известно, законодатель мод, в том числе и в области косметики.

СЛОВАРИК ТЕРМИНОВ

Витамин А - ретинол и его производные (ретиналь, ретиноевая кислота и др.), необходим для роста и дифференцировки тканей, процессов фоторецепции и репродукции, его недостаток вызывает ксерофтальмию.

Витамин С - аскорбиновая кислота, участвует в окислительно-восстановительных реакциях, его недостаток приводит к цинге .

Витамин D - группа родственных веществ, необходимых для роста костей (способствуют усвоению кальция и фосфора), его недостаток вызывает рахит .

Витамин Е - α-токоферол и родственные соединения, один из главных антиоксидантов в живых организмах, его недостаток вызывает бесплодие.

Витамин К - группа родственных веществ, участвующих в процессе свертывания крови.

Тиамин (витамин В1 ) - его производное, тиаминпирофосфат (кокарбоксилаза) входит в состав большого числа ферментов, участвующих в углеводном обмене, недостаток этого витамина приводит к заболеванию бери-бери .

Рибофлавин (витамин В2 ) - его производные входят в состав ферментов дыхательной цепи.

Пантотеновая кислота (витамин В3 ) - ее производные (кофермент А и др.) участвуют в важнейших процессах синтеза и распада веществ.

Витамин В6 - группа родственных веществ (пиридоксин, пиридоксаль, пиридоксамин), производные которых (пиридоксальфосфат и пиридоксаминфосфат) участвуют в обмене аминокислот.

Витамин В12 - группа родственных веществ (кобаламинов), входят в состав ферментов, участвующих во многих важных процессах синтеза и распада веществ, в том числе в процессе кроветворения.

Фолацин (витамин Вс ) - фолиевая кислота и родственные соединения, ее производное, тетрагидрофолиевая кислота, входит в состав ферментов, участвующих в важнейших синтетических процессах, в том числе в процессе кроветворения.

Ниацин (витамин РР) - никотиновая кислота и никотинамид, их производные, НАД и НАДФ, участвуют в огромном числе окислительно-восстановительных процессов.

Биотин (витамин Н) - входит в состав ферментов, осуществляющих карбоксилирование (присоединение молекулы углекислого газа) органических кислот.

АВИТАМИНОЗЫ

Бери-бери - заболевание, связанное с недостатком витамина В1 . Характеризуется распространенным поражением периферических нервов конечностей. Болезнь получила широкое распространение в странах Восточной и Юго-Восточной Азии в XIX в., когда главный пищевой продукт этих стран, рис, стали очищать от оболочки ("полированный" рис).

Ксерофтальмия - поражение глаз, выражающееся в сухости конъюнктивы и роговицы. Одна из главных причин заболевания - недостаток витамина А.

Пеллагра - заболевание, связанное с недостатком ниацина. Проявляется в поражении кожи, пищеварительного тракта и нервной системы. Распространена в странах, где основной продукт питания - кукуруза.

Рахит - заболевание детей, связанное с недостатком витамина D. Характеризуется размягчением костей.

Цинга - Заболевание, связанное с недостатком витамина С. Возникает обычно при отсутствии в рационе свежих овощей и фруктов. Часто наблюдалась у участников северных и морских экспедиций. Характеризуется кровоточивостью десен, выпадением зубов и т.п.

Первые упоминания о заболевании (какке, бери-бери), известном сейчас как проявление недостаточности тиамина, встречаются в древних медицинских трактатах, дошедших до нас из Китая, Индии, Японии. К концу 19-го столетия клинически уже различали несколько форм этой патологии, но только Takaki (1887) связал заболевание с какой-то, как он тогда полагал, недостаточностью азотсодержащих веществ в пищевом рационе. Более определенные представления были у голландского врача С. Eijkman (1893-1896), обнаружившего в рисовых отрубях и в некоторых бобовых растениях неизвестные тогда факторы, предупреждавшие развитие или излечивавшие бери-бери. Очисткой этих веществ занимались затем Funk (1924), впервые предложивший сам термин «витамин», и ряд других исследователей. Извлеченное из естественных источников активное вещество только в 1932 г. было охарактеризовано общей эмпирической формулой, а затем в 1936 г. успешно синтезировано Williams с соавторами. Еще в 1932 г. высказывалось предположение о роли витамина в одном из конкретных процессов обмена веществ - декарбоксилировании пировиноградной кислоты, но лишь в 1937 г. стала известна коферментная форма витамина - тиаминдифосфат (ТДФ). Коферментные функции ТДФ в системе декарбоксилирования альфа-кетокислот долгое время представлялись почти единственными биохимическими механизмами реализации биологической активности витамина, однако уже в 1953 г. круг ферментов, зависящих от присутствия ТДФ, был расширен за счет транскетолазы, а сравнительно недавно и специфической декарбоксилазы гамма-окси-альфа-кетоглютаровой кислоты. Нет оснований думать, что перечисленным исчерпывается перспектива дальнейшего изучения витамина, так как эксперименты на животных, данные, получаемые в клинике при лечебном применении витамина, анализ фактов, иллюстрирующих известную нейро- и кардиотропность тиамина, с несомненностью указывает на наличие еще каких-то специфических связей витамина с другими биохимическими и физиологическими механизмами.

Химические и физические свойства витамина В1

Тиамин или 4-метил-5-бета-оксиэтил-N- (2-метил-4-амино-5-метилпиримидил) -тиазолий, получается синтетически обычно в виде хлористо- или бромистоводородной соли.

Тиаминхлорид (М-337,27) кристаллизуется в воде в виде бесцветных моноклинических игл, плавится при 233-234° (с разложением). В нейтральной среде его спектр поглощения имеет два максимума - 235 и 267 нм, а при рН 6,5 один - 245-247 нм. Витамин хорошо растворяется в воде и уксусной кислоте, несколько хуже в этиловом и метиловом спиртах и нерастворим в хлороформе, эфире, бензоле, ацетоне. Из водных растворов тиамин может быть осажден фосфорно-вольфрамовой или пикриновой кислотой. В щелочной среде тиамин подвергается многочисленным превращениям, которые, в зависимости от природы добавленного окислителя, могут завершаться образованием тиаминдисульфида или тиохрома.

В кислой среде витамин разлагается только при длительном нагревании, образуя 5-гидрокси-метилпиримидин, муравьиную кислоту, 5-аминометилпиримидин, тиазоловый компонент витамина и З-ацетил-3-меркапто-1-пропанол. Среди продуктов распада витамина в щелочной среде идентифицированы тиотиамин, сероводород, пиримидодиазепин и др. Получены также сульфат и мононитрат витамина. Известны соли тиамина с нафталенсульфоновой, арилсульфоновой, цетилсерной и эфиры с уксусной, пропионовой, масляной, бензойной и другими кислотами.

Особое значение имеют эфиры тиамина с фосфорной кислотой, в частности ТДФ, являющийся коферментной формой витамина. Получены также гомологи тиамина путем различных замещений у второго (этил-, бутил-, оксиметил-, оксиэтил-, фенил-, оксифенил-, бензил-, тиоалкил-), четвертого (окситиамин) и шестого (метил-, этил) атомов углерода пиримидина метилированием аминогруппы, замещением тиазолового цикла на пиридиновой (пири-тиамин), имидозоловый или оксазоловый, модификациями заместителей у пятого углерода тиазола (метил-, оксиметил-, этил, хлорэтил-, оксипропил- и др.) . Отдельную большую группу соединений витамина составляют S-алкильные и дисульфидные производные. Среди последних наибольшее распространение как витаминный препарат получил тиаминпропилдисульфид (ТПДС).

Методы определения витамина В1

В чистых водных растворах количественное определение тиамина легче всего проводить по поглощению при 273 нм, что соответствует изобестической точке спектра витамина, хотя некоторые авторы предпочитают работать в области 245 нм, в которой изменения экстинкции наиболее заметны. При рН 7,3 в фосфатном буфере тиамин еще в концентрации 1 мкг/мл дает отчетливую водородную полярографическую каталитическую волну, а в щелочной среде образует анодную волну, обусловленную взаимодействием тиолтиамина со ртутью и образованием меркаптида. Обе полярографические характеристики можно применить для количественного определения витамина. Если необходимо исследовать различные производные витамина, то приходится прибегать к предварительному их разделению путем электрофореза или хроматографии.

Наиболее удачным общим принципом колориметрического определения витамина являются реакции его взаимодействия с различными диазосоединениями, среди которых наилучшие результаты дает диазотированный р-аминоацетофенон. Образующееся ярко окрашенное соединение легко экстрагируется из водной фазы в органический растворитель, в котором оно легко подвергается количественному фотометрированию. В фосфатном буфере рН 6,8 тиамин при нагревании взаимодействует также с нингидрином, давая желтую окраску, пропорциональную концентрации витамина в интервале 20-200 мкг.

Наибольшее распространение получили различные варианты флюо-риметрического определения витамина, основанные на окислении тиамина в тиохром в щелочной среде. Предварительная очистка исследуемого материала от мешающих последующему флюориметрированию примесей достигается кратковременным кипячением проб с разбавленными минеральными кислотами, удалением примесей экстракцией бутиловым или амиловым спиртами или выделением витамина на соответствующих адсорбентах. Как показали исследования японских авторов, в качестве окислителя вместо феррицианида калия предпочтительнее применять бромциан, дающий больший выход тиохрома и снижающий образование других мешающих определению соединений. Для удовлетворительного определения тиамина требуется 100-200 мг ткани или 5-10 мл крови. Учитывая, что основной формой витамина, присутствующей в тканях, является ТДФ или протеидизированные дисульфидные производные тиамина, всегда необходима предварительная обработка исследуемых образцов (слабый кислотный гидролиз, фосфатаза, восстанавливающие агенты) для выделения свободного тиамина, так как другие формы витамина не образуют тиохрома, экстрагируемого затем для флюориметрии в органический растворитель.

Количественное определение коферментной формы витамина производится путем рекомбинации содержащегося в исследуемом растворе ТДФ с дружжевой апокарбоксилазой. В обоих случаях в присутствии ионов магния и пирувата происходит специфическое декарбоксилирование кетокислоты, а количество выделяющейся углекислоты (в аппарате Варбурга) пропорционально внесенному в пробу количеству ТДФ (0,02- 1 мкг). Еще выше чувствительность (0,005-0,06 мкг ТДФ) метода, основанного на ферментативном определении ацетальдегида, образующегося в первой реакции. Внесение в инкубационную среду наряду с апокарбоксилазой и специфическим субстратом еще и алкогольдегидрогеназы позволяет очень быстро (5-7 минут) вести учет реакции по изменению экстинкции раствора при 340 нм в области, соответствующей НАДН2.

Другие фосфаты тиамина определяются количественно после элек-трофоретического или хроматографического разделения их, последующей элюции, дефосфорилирования фосфатазами и флюориметрии полученного путем окисления в щелочной среде тиохрома. Микробиологические методы определения тиамина основываются на подборе соответствующих культур микроорганизмов, чувствительных к недостатку витамина. Наиболее точные и воспроизводимые результаты дает применение для этих целей Lactobacillus fermenti-36.

Распространение витамина В1 в природе

Продукт Содержание тиамина в мкг % Продукт Содержание тиамина в мкг %
Пшеница 0,45 Томаты 0,06
Рожь 0,41 Говядина 0,10
Горох 0,72 Баранина 0,17
Фасоль 0,54 Свинина 0,25
Крупа овсяная 0,50 Телятина 0,23
Крупа гречневая 0,51 Ветчина 0,96
Крупа манная 0,10 Куры 0,15
Рис шлифованный 0 Яйца куриные 0,16
Макароны следы Рыба свежая 0,08
Мука пшеничная 0,2-0,45 Молоко коровье 0,05
Мука ржаная 0,33 Фрукты разные 0,02-0,08
Хлеб пшеничный 0,10-0,20 Дрожжи пивные сухие 5,0
Хлеб ржаной 0,17 Орехи грецкие 0,48
Картофель 0,09 Орехи земляные 0,84
Капуста белокачанная 0,08

Тиамин распространен повсеместно и обнаруживается у разных представителей живой природы. Как правило, количество его в растениях и микроорганизмах достигает величин значительно более высоких, чем у животных. Кроме того, в первом случае витамин представлен преимущественно свободной, а во втором - фосфорилированной формой. Содержание тиамина в основных продуктах питания колеблется в довольно широких пределах в зависимости от места и способа получения исходного сырья, характера технологической обработки полупродуктов и т. п. Величины, приводимые по этому поводу в литературе, характеризуют, как правило, уровень витамина до кулинарной обработки, которая сама по себе значительно разрушает тиамин. В среднем можно считать, что обычное приготовление пищи разрушает около 30% витамина. Некоторые виды обработки (высокая температура, повышенное давление и наличие больших количеств глюкозы), разрушают до 70-90% витамина, а консервация продуктов путем обработки их сульфитом может полностью инактивировать витамин. В злаковых и семенах других растений тиамин, подобно большинству водорастворимых витаминов, содержится в оболочке и зародыше. Переработка растительного сырья (удаление отрубей) всегда сопровождается резким снижением уровня витамина в полученном продукте. Шлифованный рис, например, совсем не содержит витамина.

Обмен тиамина в организме

Витамин поступает с пищей в свободном, эстерифицированном и частично связанном виде. Под влиянием пищеварительных ферментов происходит почти количественное его превращение в свободный тиамин, который всасывается из тонкого кишечника. Значительная часть поступившего в кровь тиамина быстро фосфорилируется в печени, часть его в виде свободного тиамина поступает в общий кровоток и распределяется по другим тканям, а часть снова выделяется в желудочно-кишечный тракт вместе с желчью и экскретами пищеварительных желез, обеспечивая постоянную рециркуляцию витамина и постепенное, равномерное усвоение его тканями. Почки активно экскретируют витамин в мочу. У взрослого человека за сутки выделяется от 100 до 600 мкг тиамина. Введение повышенных количеств витамина с пищей или парентерально увеличивает выделение витамина с мочой, но по мере повышения доз пропорциональность постепенно исчезает. В моче наряду с тиамином начинают в возрастающих количествах появляться продукты его распада, которых при введении витамина свыше 10 мг на человека может быть до 40-50% исходной дозы. Опыты с меченым тиамином показали, что наряду с неизмененным витамином в моче обнаруживается некоторое количество тиохрома, ТДС, пиримидиновый, тиалозовый компоненты и различные углерод- и серусодержащие осколки, в том числе меченые сульфаты.

Таким образом, разрушение тиамина в тканях животных и человека происходит достаточно интенсивно, но попытки обнаружить в животных тканях ферменты, специфически разрушающие тиамин, пока не дали убедительных результатов.

Суммарное содержание тиамина во всем организме человека, нормально обеспеченного витамином, составляет примерно 30 мг, причем в цельной крови его находится 3-16 мкг%, а в других тканях значительно больше: в сердце - 360, печени - 220, в мозге - 160, легких - 150, почках - 280, мышцах - 120, надпочечнике - 160, желудке - 56, тонком кишечнике - 55, толстом кишечнике - 100, яичнике - 61, яичках - 80, коже - 52 мкг%. В плазме крови обнаруживается преимущественно свободный тиамин (0,1 - 0,6 мкг%), а в эритроцитах (2,1 мкг на 1011 клеток) и лейкоцитах (340 мкг на Ю11 клеток) - фосфорилированный. Почти половина витамина находится в мышцах, 40%-во внутренних органах, причем 15-20% в печени. Основное количество тиамина тканей представлено ТДФ, хотя кожа и скелетные мышцы содержат довольно много дисульфидов витамина.

Свободный тиамин в норме легко определяется в кишечнике и почках, что может быть связано и с недостатками чисто методического порядка, так как эти ткани обладают исключительно высокой фосфатазной активностью и к моменту взятия материала на исследование уже может происходить частичное дефосфорилирование эфиров витамина. С другой стороны, эти же механизмы могут играть определенную роль в удалении витамина из крови в мочу или кал. Количество витамина в кале у человека составляет примерно 0,4-1 мкг и практически не зависит от биосинтеза витамина кишечной микрофлорой.

Некоторое представление о динамике обмена тканевых запасов витамина дают опыты, проведенные с S35-тиамином. Обновление тиамина происходит в разных тканях с различной скоростью и практически полная замена нерадиоактивного витамина на радиоактивный (вводимый ежедневно) осуществляется к 8-му дню опыта лишь в печени, почках, селезенке и скелетных мышцах. В сердце, поджелудочной железе и ткани мозга к указанному сроку процесс этот не завершается. Эти данные показывают, что количество витамина, находящегося в тканях, во много раз выше того уровня, который необходим для обеспечения специфических ферментных систем ТДФ. По-видимому, значительные количества витамина присутствуют в тканях, особенно в сердце и печени, в виде его производных, осуществляющих какие-то другие некоферментные функции.

Механизмы депонирования тиамина в организме

Фиксация витамина в тканях связана в основном с образованием ТДФ, который составляет не менее 80-90% всего тиамина, обнаруживаемого в организме. Некоторая неопределенность представлений по этому вопросу связана с обнаружением наряду с ТДФ, особенно в короткие промежутки после введений витамина, других ТФ и смешанных тиаминдисульфидов. При определенных условиях от 10 до 30% витамина может быть представлено ТМФ и ТТФ. Кроме того, ТТФ легко превращается в ТДФ в ходе обработки биологического материала перед исследованием. Подобно другим фосфорилированным коферментам, ТДФ фиксируется на белках по свой пирофосфатной группировке. Однако, и другие участки молекулы витамина играют при этом, не менее активную роль.

Образование тиаминфосфатов (тф)

Реакция фосфорилирования тиамина происходит за счет АТФ по общему уравнению: тиамин +АТФ-> ТДФ+АМФ.

Закономерности этой реакции были подтверждены на частично очищенном препарате тиаминкиназы из растворимой фракции гомогената печени. Оптимум рН для образования ТДФ этим ферментным препаратом лежал в пределах 6,8-6,9. Фосфорилирование тиамина подавлялось АМФ и АДФ. В присутствии АМФ образовывались лишь следы, а в присутствии АДФ - весьма незначительные количества ТДФ. Если в среду вместо тиамина вносился ТМФ, то образование ТДФ тормозилось. Очищенный примерно в 600 раз препарат тиамикиназы был применен для изучения механизма фосфорилирования витамина с использованием меченой гамма-Р32-АТФ. Оказалось, что тиамин получает от АТФ целиком пирофосфатную группировку.

В серии работ по изучению тиаминкиназы, выделенной из дрожжей и животных тканей, установлено, что ионы марганца, магния и кобальта активировали, а кальция, никеля, рубидия и железа - в широком диапазоне концентраций не угнетали фермент. В этих же работах показана возможность фосфорилирования тиамина за счет других нуклеотидтрифосфатов (ГТФ, ИТФ, УТФ и др.) и то, что основным продуктом реакции является ТДФ и небольшое количество ТМФ. Применением Р32-АТФ, как и в исследованиях предыдущих авторов, подтвержден механизм переноса на тиамин сразу пирофосфатной группировки.

Однако результаты, полученные in vitro, не нашли полного подтверждения при изучении фосфорилирования тиамина в организме и в опытах с митохондриями. С одной стороны, после внутривенного введения тиамина уже через 30-60 минут в крови животных обнаруживались меченные по фосфору ТДФ и ТТФ, но не ТМФ, т.е. подтверждался механизм пирофофорилирования. С другой стороны, после внутривенного введения ТМФ кокарбоксилазная и транскетолазная активность крови нарастала быстрее, чем после введения свободного тиамина. Некоторые микроорганизмы легче образуют ТДФ из ТМФ, чем из свободного витамина, а тиаминкиназа, найденная ранее в печени, не обнаружена в митохондриях почек, в которых фосфорилирование тиамина идет другим путем. Механизм фосфорилирования витамина с участием только АТФ не всегда укладывается в простую схему переноса пирофосфатной группировки в целом хотя бы потому, что наряду с ТДФ в различном биологическом материале обнаруживаются в значительных количествах и другие ТФ, в том числе даже Т-полифосфаты.

Ряд исследований касается вопроса о локализации систем, ответственных за фосфорилирование тиамина. Печень уже через час после введения тиамина захватывает 33-40% витамина, накапливая различные его фосфорные эфиры. Фосфорилирование меченого витамина в разных органах происходит в порядке убывающей активности: печень, почки, сердце, семенники, головной мозг. При этом радиоактивность фосфорных эфиров тиамина убывает в ряду: ТТФ, ТДФ, ТМФ. Фосфорилирование тиамина идет активно в митохондриях, микросомах и гиалоплазме.

Из изложенных выше фактов нетрудно сделать вывод, что общая интенсивность процессов эстерификации витамина в организме или в отдельных тканях должна в значительной степени коррелировать с активностью процессов, поставляющих АТФ. Первые экспериментальные наблюдения в этом плане, проведенные на гомогенатах печени или клеточных элементах крови, получили в дальнейшем полное подтверждение. Все ингибиторы дыхания и гликолиза или соединения, конкурирующие с Т за АТФ, как правило, снижают уровень ТДФ в крови и в тканях.

Роль отдельных группировок в молекуле тиамина для его связывания в тканях

К настоящему времени синтезировано больщое количество новых производных тиамина (смешанные дисульфиды, О-бензоильные производные и др.), широко внедряемых в лечебную и профилактическую практику. Преимущества новых витаминных препаратов, как правило, выявлялись чисто эмпирически в связи с тем, что до настоящего времени мы не располагаем достаточными сведениями о молекулярных механизмах ассимиляции тиамина, о характере его взаимодействия со специфическими (ферменты) и неспецифическими (осуществляющими транспорт витамина) белками. Необходимость точных представлений в этом вопросе диктуется и широкими перспективами использования антивитаминов тиамина (ампрол, хлоротиамин, деокситиамин) для лечебных целей (см. ниже).

Работы по синтезу новых производных тиамина с заранее заданными физико-химическими свойствами, обусловливающими возможности целенаправленного воздействия на обменные процессы в организме, немыслимы без конкретных представлений о роли отдельных групп атомов витамина и его производных в этой области. Значение пирофосфатного радикала для специфической протеидизации ТДФ в составе соответствующих ферментов уже отмечалось выше. Появилось большое количество данных, доказывающих участие тиамина в других реакциях, не имеющих ничего общего с коферментными функциями витамина. Можно допустить, что разнообразию активных группировок в молекуле тиамина соответствуют особые формы претеидизации, при которых блокируются одни и открываются одновременно другие, важные для соответствующей функции, участки молекулы витамина. Действительно, первый тип протеидизации (через пирофосфатный радикал) отвечает коферментной функции и оставляет свободными, доступными для субстрата 2-й углерод тиазола и аминогруппу пиримидинового компонента. С другой стороны, очевидно, что участие витамина в окислительно-восстановительных реакциях или в процессах перефосфорилирования должно сочетаться с исключением возможности одновременного функционирования его как кофермента, так как в первом случае необходима деполяризация и раскрытие тиазолового цикла, а во втором - свободное положение фосфорилированного оксиэтильного радикала. Поскольку 80-90% тиамина, присутствующего в тканях, освобождается лишь при кислотном и ферментативном гидролизе, можно считать, что все связанные формы витамина находятся в протеидизированном, т. е. связанном с белками, состоянии.

Представление о значении отдельных участков молекулы тиамина в этом процессе легко получить, определяя степень связывания тканями меченного по сере (S35) витамина и некоторых его производных, лишенных тех или иных активных центров, например аминогруппы - окситиамин (окси-Т), аминогруппы и оксиэтильного радикала - хлорокситиамин (ХОТ), четвертичного азота в тиазоловом цикле - тетрагидротиамин (ТТ). Не касаясь деталей затронутого вопроса, можно с достаточной уверенностью утверждать, что модификации структуры хотя бы одного участка в молекуле витамина резко нарушают (см.таблицу) условия его_связывания тканями: через 24 часа все введенные меченые производные тиамина связываются хуже, чем витамин.

Сам по себе этот факт говорит о том, что при взаимодействии тиамина с белками играет роль не одна-две, а, по-видимому, несколько группировок.

Коферментные функции тиаминдифосфата

Известно значительное количество различных реакций, катализируемых ТДФ. Однако все их можно свести к нескольким типичным вариантам: простое и окислительное декарбоксилирование альфа-кетокислот, ацилоиновая конденсация, фосфорокластическое расщепление кетосахаров. Ферментные системы, принимающие участие в этих реакциях, по-видимому, едины в основных принципах своего действия; различна лишь последующая судьба «активного альдегидного осколка», возникающего на первых этапах процесса. Исследования превращений альфа-кетокислот позволили четко представить как роль собственно декарбоксилирующего фрагмента полиферментного комплекса дегидрогеназы, содержащего ТДФ, так и последовательность всех других, связанных с ним реакций.

В системе транскетолазы (ТК) «активный альдегидный» осколок, очевидно, будет представлен гликолевым радикалом, переносимым от соответствующих источников (ксилулозо-5-фосфат, фруктозо-6-фосфат, оксипируват и др.) на различные акцепторы (рибозо-5-фосфат, эритрозо-4-фоофат, глюкозо-6-фосфат). В фосфокетолазной реакции «активный гликолевый» радикал превращается непосредственно в ацетилфосфат.

Значительные успехи в выяснении механизма каталитического действия ТДФ были достигнуты в результате исследований, проведенных в двух основных направлениях: создание модельных неферментативных систем и введение в ферментные системы различных аналогов или антагонистов тиамина. Используя первый путь, удалось показать, что витамин В1 и в нефосфорилированном виде способен при определенных условиях в отсутствие белка катализировать реакции декарбоксилирования, образования ацетона, дисмутации диацетила. Различными вариантами опытов, в которых коферментная активность ТДФ сравнивалась с активностью антиметаболитов витамина или изучалась с добавлением соли Рейнеке, бромацетата, пара-хлор-меркурий-бензоата и других соединений, показано, что каталитически наиболее важными группами в молекуле тиамина являются: сера, четвертичный азот тиазолового кольца, аминогруппа в положении 4 пиримидинового кольца, второй углеродный атом тиазола (2-С-Тз), метиленовый мостик. Некоторые активные центры (сера, азот, метиленовый мостик) необходимы только для поддержания определенной структуры и создания соответствующей электронной плотности у второго углеродного атома тиазола (2-С-Тз), который является главным каталитическим центром. Спорными и неопределенными пока являются представления о значении аминогруппы пиримидинового компонента.

Значение второго углерода тиазола

Впервые каталитические свойства тиазолиевых солей были показаны на примере бензоиновой конденсации. Затем было установлено, что от 2-С-Тз в обычных, близких к физиологическим условиям легко отщепляется протон, а из тиамина образуется двойной ион, для которого легко было постулировать механизмы взаимодействия с альфа-кетокислотами и образование промежуточного соединения оксиэтилтиамина (ОЭТ), соответствующего представлениям об «активном ацетальдегиде».

Синтетические препараты ОЭТ, испытанные как ростовые факторы для микробов, обладали 80% активности по сравнению с витамином. Образование ОЭТ как естественного продукта обмена было показано для некоторых микроорганизмов. Представления о решающей роли 2-С-Тз в осуществлении коферментных функций оказались в достаточной мере плодотворными, так как за относительно короткий промежуток времени были выделены и некоторые производные ТДФ, соответствующие другим известным промежуточным продуктам ферментативных реакций: дигидроксиэтил-ТДФ («активный гликолевый альдегид» в транскетолазной и фосфокетолазной реакции), альфа-гидрокси- гамма-карбокси-пропил-ТДФ («активный янтарный полуальдегид») и оксиметил-ТДФ, играющий роль в обмене глиоксилата и образовании активных формильных радикалов.

Значение пиримидинового компонента

Даже незначительные замещения в аминопиримидиновом компоненте тиамина резко снижают витаминную активность новых соединений. Особое внимание в этом плане уже давно уделяется аминогруппе, замена которой на оксигруппу вызывает образование известного антиметаболита витамина - окси-Т, способного после фосфорилирования до дифосфата подавлять активность как ПД, так и ТК. Потеря коферментной активности наблюдается и в случае незначительных изменений структуры аминогруппы (метилирование) или простого ее удаления из ТДФ.

Критическое рассмотрение обширного экспериментального материала, касающегося изучения каталитической активности тиамина или его производных в модельных и ферментных системах, заставляет по-новому обратить внимание на некоторые особенности строения катализатора и обменивающихся при его участии субстратов.

Такой особенностью, общей для кофермента и субстратов, является строгая зависимость рассматриваемых реакций одновременно от двух активных центров - на субстрате и, по-видимому, на катализаторе. Действительно, все разнообразие субстратов, принимающих участие в реакциях, катализируемых ТДФ, может быть легко сведено к принципиально единому типу, особенностью которого является смежное расположение у соседних углеродных атомов карбонильной и гидроксильной групп. Только между такими углеродными атомами происходит разрыв (тиаминолиз) связи при участии ТДФ.При этом всегда один и тот же осколок становится в дальнейшем «активным», способным к различным конденсациям, а второй - «пассивным», конечным метаболитом реакции. Определенное расположениекарбонильной и гидроксильной групп абсолютно необходимо для осуществления каталитического механизма.

Некоферментная активность тиамина и некоторых его производных

Наряду с выяснением механизма основных реакций, в которых каталитическую роль играет ТДФ, имеются многочисленные данные о высокой биологической активности других некоферментных производных тиамина. Отчетливо наметились два направления исследований: возможное участие различных фосфорных эфиров витамина в активном переносе богатых энергией фосфатных групп (ангидридная связь в ТДФ макроэргическая) и вероятность вмешательства тиамина в окислительно-восстановительные реакции. В связи с тем, что неизвестны специфические тиаминсодержащие ферментные системы, причастные к регуляции упомянутых выше процессов, наблюдаемые в этой сфере обмена эффекты витамина можно рассматривать как проявление его неспецифических функций.

Тиаминофосфаты (тф)

После разработки доступных методов получения ТДФ его стали широко испытывать при различных заболеваниях в клинических условиях. Внутривенное введение 100-500 мг ТДФ при диабетическом ацидозе увеличивало количество пирувата, образующегося из глюкозы. Эффект аналогичного характера наблюдался при диабете после введения АТФ или фосфокреатина. В мышцах при утомлении и отдыхе распад и ресинтез ТДФ происходят примерно по тем же закономерностям, которые известны для АТФ и фосфокреатина. Характерными были изменения во время отдыха, когда количество ТДФ превышало исходный уровень до утомительной работы. Причины усиленного распада ТДФ во время сократительной деятельности мышц вряд ли возможно объяснить с позиции известных коферментных функций ТДФ. Установлено, что введение животным больших доз ТДФ уже через несколько часов значительно (иногда в 2 раза) повышает в тканях содержание лабильных фосфорных соединений.

Свободный тиамин и его производные

Введение животным антиме-таболитов витамина - окси-Т и ПТ - вызывает различную картину нарушений в обмене и в физиологических функциях, что позволило предположить вероятность существования у тиамина нескольких различных или даже независимых друг от друга функций. Различие между этими антиметаболитами с химической точки зрения сводится к исключению тиолдисульфидных превращений у ПТ и трициклических по типу тиохрома (Тх) у окси-Т. Возможность каталитического действия тиамина на уровне окислительно-восстановительных реакций в обмене давно допускают и критикуют разные авторы. Действительно, различная обеспеченность витамином сильно влияет на активность ряда окислительных ферментов или содержание в крови восстановленных форм глютатиона. Витамин обладает антиоксидантными свойствами в отношении аскорбиновой кислоты, пиридоксина и легко взаимодействует с оксигруппами полифенолов. Дигидро-Т частично окисляется в тиамин дрожжами и бесклеточными экстрактами, кристаллическими препаратами пероксидазы, тирозиназы и неферментативно при взаимодействии с кристаллическим убихиноном, пластохиноном, менадионом.

Тиол-дисульфидные превращения

ТДС обнаружен в тканях животных, моче, крови, оттекающей от перфузируемой витамином печени, дрожжах и др. Легкость взаимодействия ТДС с цистеином и глютатионом явилась поводом к предположению о вероятности непосредственного участия витамина в форме тиола в окислительно-восстановительных реакциях в организме. Также показано, что в щелочной среде и в биологических системах витамин легко реагирует с различными тиоловыми соединениями, образуя парные дисульфиды. При взаимодействии с гидрохиноном, рутином и катехинами тиамин превращается в ТДС. Эта реакция может иметь особую роль в обратимых превращениях хинонов в дифенолы, например в меланогенезе на одном из этапов превращения тирозина в меланин.

Участие тиамина в обмене веществ

Декарбоксилирование альфа-кетокислот у микроорганизмов протекает без сопряженного окисления, и типичный для указанного действия фермент карбоксилаза осуществляет распад пирувата до углекислоты и ацетальдегида.

СН3-СО-СООН --> СН3-СНО + С02

Тот же фермент принимает участие в обмене других сходным образом построенных кетокислот и может катализировать конденсацию образующихся альдегидов до соответствующих ацилоинов. Неокислительные превращения альфа-кетокислот при определенных условиях имеют место и в тканях животных. Но для животных тканей основным типичным путем превращения альфа-кетокислот является их окислительное декарбоксилирование. Процесс этот касается нескольких соединений (пируват, кетоглутарат, глиоксилат, гамма-окси-альфа-кетоглутарат) и связан с различными специфическими ферментами.

1. Дегидрогеназа пировиноградной кислоты (ПД) осуществляет де-карбоксилирование и окисление пирувата (ПК) через промежуточные этапы, которые можно суммировать общим уравнением:

СН3-СО-СООН + КоА + НАД СН3-СО-КоА + С02 + НАД.Н2.

Таким образом, реакция контролирует процесс аэробного окисления углеводов и занимает ключевую позицию на путях превращения углеводов в липиды и катаболизма глюкозы через цикл лимонной кислоты. Фермент весьма чувствителен к недостатку тиамина в целом организме, в связи с чем авитаминоз и гиповитаминоз В1, как правило, сопровождаются торможением процесса распада ПК и соответствующим накоплением кетокислоты в крови и в моче. Последнее обстоятельство широко используется как биохимический показатель недостаточности тиамина. Большое значение ПД-реакция имеет и в поддержании определенного равновесия в обмене аминокислот, так как ПК является участником многих реакций трансаминирования, в результате которых она превращается в аминокислоту аланин.

2. Дегидрогеназа альфа-кетоглютаровой кислоты (КГД) в основной последовательности своего действия и участвующих в реакции кофакторов не отличается от ПД. Однако сам фермент построен из более крупных субъединиц белка, а ТДФ в нем более прочно связан с декарбоксилирующим фрагментом, чем с аналогичным белком в ПД. Указанное обстоятельство уже само по себе в значительной мере объясняет большую устойчивость фермента к недостаточности тиамина в организме и подчеркивает важность для процессов жизнедеятельности реакции катализируемой КГД. Действительно, фермент, являясь компонентом циклофоразной системы, участвует в окислительном превращении альфа-кетоглютаровой кислоты (КГК) в сукцинил-КоА.

НООС-СН2 СН2 СО- СООН + КоА + НАД -- > НООС-СН2 СН2 СО- КоА + СО2 + НАД-Н2.

Уровень КГК, контролируемый КГД, важен, кроме того, для осуществления постоянной связи лимоннокислого цикла с белковым обменом, в частности с реакциями трансаминирования и аминирования, в результате которых образуется глутаминовая кислота.

3. Дегидрогеназа гамма-окси-альфа-кетоглютаровой кислоты обнаружена в 1963 г. Соединение это образуется в тканях в заметных количествах из оксипролина или из ПК и глиоксилата. После окислительного декарбоксилирования гамма-окси-альфа-КГК превращается в яблочную кислоту - один из промежуточных субстратов цикла лимонной кислоты. При недостаточности тиамина фермент быстро теряет активность, а наблюдающийся в этих условиях замедленный обмен ПК способствует избыточному образованию гамма-окси-альфа-КГК. Последнее соединение, как выяснилось, является мощным конкурентным ингибитором аконитазы, изоцитратдегидрогеназы и дегидрогеназы альфа-КГК, т. е. сразу трех ферментов лимоннокислого цикла. Указанное обстоятельство достаточно хорошо объясняет казавшийся ранее противоречивым факт, когда количество КГД при авитаминозе B1 остается почти нормальным при явном торможении цикла лимонной кислоты.

4. Окислительное декарбоксилирование глиоксиловой кислоты с образованием активного формильного остатка, который, по-видимому, может широко использоваться в соответствующих обменных реакциях, например при синтезе азотистых оснований нуклеиновых кислот.

5. Фосфорокластическое расщепление кетосахаров, в частности ксилулозо-5-фосфата у некоторых микроорганизмов, осуществляет содержащий ТДФ фермент фосфокетолаза.

Ксилулозо-5-фосфат + Н3Р04 -- > фосфоглицериновый альдегид + ацетилфосфат.

Отсутствие в составе указанного фермента известных специфических акцепторов водорода дает основание предположить, что образующийся в ходе реакции ДОЭТДФ подвергается внутримолекулярному окислению с образованием ацетильного остатка сразу на ТДФ, после чего готовый ацетил снимается с кофермента при участии фосфорной кислоты. В связи с тем что аналогичным образом реакция протекает с фруктозо-6-фосфатом, предполагается, что у микроорганизмов существует особый «фосфокетолазный» шунт в обмене углеводов, который при участии трансальдолазы, транскетолазы, изомеразы и эпимеразы пентозофосфатов, альдолазы и фруктозодифосфатазы обеспечивает укороченный путь ассимиляции фруктозы с возможным образованием 3 молекул АТФ и ацетата.

Фруктозо-6-фосфат + 2Н3РО4 -- > 3-ацетилфосфат.

Сходные с фосфокетолазой ферменты, катализирующие образование ацетилфосфата из пирувата, обнаружены также у отдельных видов микроорганизмов.

6. Транскетолаза катализирует реакции переноса гликольальдегидного радикала от кетосахаров на альдосахара. Типичным и, пожалуй, имеющим наиболее важное значение примером подобного рода является взаимодействие ксилулозо-5-фосфата с рибозо-5-фосфатом или с эритрозо-4-фосфатом в пентозном цикле. При участии транскетолазы протекают реакции неокислительного образования пентозофосфатов из гексозофосфатов или реакции ассимиляции пентозофосфатов, когда речь идет о функционировании глюкозо-монофосфатного окислительного шунта. Очевидно, что таким образом с транскетолазой оказываются тесно связанными процессы обеспечения организма пентозофосфатами (синтез нуклеотидов, нуклеиновых кислот) и НАДФН2, являющегося важнейшим поставщиком водорода при большинстве восстановительных биосинтезов (жирные кислоты, холестерин, гормоны и др.). Та же транскетолазная реакция служит одним из промежуточных этапов в процессах фотосинтеза, зависящих от постоянной регенерации рибулозо-1,5-дифосфата. Интересно отметить, что ДОЭТДФ, возникающий в ходе транскетолазной реакции, оказался соединением, которое подвергается окислению до гликолил-КоА в системе дегидрогеназ альфа-кетокислот. Таким путем может возникать остаток гликолевой кислоты, используемой затем при синтезе N-гликолил-нейраминовой кислоты и других гликолевых соединений.

Антитиаминные факторы

  • антиметаболиты витамина
  • вещества, по-разному инактивирующие витамин путем непосредственного с ним взаимодействия.

Первая группа охватывает ряд искусственно полученных аналогов тиамина с различными химическими модификациями строения его молекулы. Интерес к подобным соединениям объясняется тем, что некоторые из них оказались мощными антипротозойными препаратами, а другие вызывают сдвиги в организме животных, представляющие интерес для коррекции отдельных обменных нарушений у человека.

Ко второй группе относятся ферменты, специфически разрушающие витамин (тиаминазы), и весьма разнообразные природные соединения (термостабильные антивитаминные факторы), инактивирующие тиамин. Антивитамины второго типа в ряде случаев выступают как патогенетические агенты в развитии гипо- и авитаминозных состояний у человека или животных и, возможно, играют определенную роль в качестве естественных регуляторов действия тиамина. Рассмотрение вопроса в таком плане представляется обоснованным в связи с тем, что избыток витамина в организме приводит к отчетливым метаболическим отклонениям от нормы, а некоторые заболевания у человека сопровождаются накоплением тиамина не только в крови, но и во внутренних органах.

Антиметаболиты тиамина

Выше подробно рассмотрены значение пиримидинового и тиазолового компонентов в ферментативных реакциях и роль оксиэтильного радикала для фиксации ТДФ в тканях или для участия в реакциях перефосфорилирования. Все три перечисленные группировки оказались теми участками молекулы витамина, видоизменения которых резко меняют биологические свойства всего соединения. Из производных с измененной структурой тиазола подробнее всего изучен аналог, у которого тиазол замещен пиридином - ПТ. Антивитаминные свойства этого соединения в отношении нервной ткани можно усилить примерно в 10 раз, если одновременно заменить 2"-метильную группу в пиримидине на этильную. Самым мощным антивитамином В1 среди модифицированных по пиримидину производных тиамина является окси-Т и примерно в 8 раз слабее 2"-бутил-Т. К получению антиметаболитов с измененным 5-оксиэтильным радикалом исследователи пришли окольным путем. Вначале был получен 1-(4-амино-2-п-пропил-5-пиримидинил)-2-пиколин хлорид или ампрол, оказавшийся весьма эффективным антикокцидиозным препаратом. Затем выяснилось, что его лечебное действие обусловлено нарушением ассимиляции (скорее всего фосфорилирования) тиамина у простейших. Полученные вслед за этим производные витамина, лишенные гидроксила в 5-этильном радикале, стали новой группой антиметаболитов, выпускаемых в промышленных масштабах для лечебных целей.

Естественные антивитаминные факторы

Тиаминаза. Симптомы, напоминающие паралитическую форму бери-бери и появляющиеся у лисиц при преимущественном кормлении их сырым карпом, впервые описаны в 1936 г. Вскоре было установлено, что причиной заболевания животных являлась недостаточность тиамина, вызываемая присутствием во внутренних органах карпа и других тканях некоторых морских рыб, моллюсков, растений и микроорганизмов фермента, специфически разрушающего тиамин, - тиаминазы. Позже стали различать две формы фермента: тиаминазу I, расщепляющую витамин с одновременным замещением тиазола на какое-нибудь азотистое основание, и тиаминазу II, разрушающую витамин гидролитически на пиримидиновый и тиазоловый компоненты. Вторая форма тиаминазы пока обнаружена только у микроорганизмов (Вас. aneurinolyticus), но последние нередко являются причиной тиаминазной болезни у человека, протекающей по типу хронического гиповитаминоза В1.

Термостабильные факторы, инактивирующие тиамин, обнаружены у рыб и очень многих растений, особенно папоротниковых. Часто эти факторы сопутствуют тиаминазам. Известно, что термостабильный фактор из внутренностей карпа разрушает витамин, подобно тиаминазе, и сам является веществом геминовой природы, а фактор, содержащийся в папоротнике, является 3,4-дигидроксициннамовой кислотой, которая образует с тиамином неактивные комплексы.

Как антиметаболиты тиамина, так и естественные антивитаминные факторы нашли широкое применение для экспериментального воспроизведения авитаминоза B1 у животных, а некоторые из них (ампрол, хлоротиамин) - как лечебные препараты в ветеринарной практике.

Потребность в тиамине и способы определения обеспеченности организма витамином В1

Трудности определения потребности человека или животных в тиамине связаны в основном с невозможностью поставить для этих целей соответствующие балансовые опыты, так как значительная доля поступающего в организм витамина подвергается многочисленным превращениям, которые до сих пор мало изучены. В связи с этим единственным критерием, являющимся контролем витаминной полноценности рациона, являются косвенные показатели, определяемые при анализе мочи и крови у людей или еще и тканей у животных. Значительная часть рекомендаций о потребности в тиамине дается и на основании оценки общего состояния обследуемых: отсутствие клинических признаков гиповитаминоза, устранение дополнительным введением витамина некоторых видов функциональной недостаточности и т. п. Для населения России с учетом поправок на индивидуальные колебания рекомендуется норма в 0,6 мг тиамина на 1000 кал суточного пищевого рациона. Эту дозу следует рассматривать как наиболее полно учитывающую потребность человека в витамине в условиях средних климатических зон и средних физических нагрузок. В определенных пределах профессиональные особенности рационов питания (увеличение калорийности) при таком подходе обеспечиваются набором различных продуктов в потребленной за сутки пище. Однако необходимо помнить, что преобладание жиров в рационе (в 4 раза против обычного) снижает потребность в тиамине примерно на 15-20%, а избыточное потребление углеводов, напротив, повышает расход витамина.

Известно, что потребность в тиамине относительно калорийности пищи возрастает при физическом и нервно-психическом напряжении, в период беременности и лактации, при воздействии на организм некоторых химических (медикаменты, промышленные яды) или физических (охлаждение, перегревание, вибрация и др.) факторов, а также при многих инфекционных и соматических заболеваниях. Так, потребность в тиамине в условиях Крайнего Севера выше на 30-50%. При старении организма, когда заметно ухудшаются условия всасывания и внутритканевой ассимиляции витамина, расчет потребности должен быть увеличен на 25-50% по отношению к калорийности пищи. Резко (в l,5-2,5 раза) возрастает расход витамина у рабочих горячих цехов, летного персонала современной сверхскоростной авиации. При физиологическом напряжении, вызванном эндогенными факторами (беременность, лактация), потребность в тиамине повышается на 20-40%. При многих интоксикациях и заболеваниях рекомендуется ежедневное введение тиамина в дозах, во много раз превышающих физиологическую потребность (10-50 мг). Вряд ли в последних случаях речь идет о специфическом витаминном действии вводимого соединения, так как особую роль при этом могут играть некоторые свойства тиамина как химического соединения.

Суточная потребность в тиамине различных групп населения в городах с развитым коммунальным обслуживанием
(В городах и селах с менее развитым коммунальным обслуживанием потребность возрастает примерно на 8-15%)
по интенсивности труда

Потребность в тиамине в мкг
Группы Возраст в годах Мужчины Женщины
в обычных условиях в обычных условиях при дополнительной физической нагрузке
Первая 18 - 40 1,7 1,9 1,4 1,6
40 - 60 1,6 1,7 1,3 1,4
Вторая 18 - 40 1,8 2,0 1,5 1,7
40 - 60 1,7 1,8 1,4 1,5
Третья 18 - 40 1,9 2,1 1,5 1,8
40 - 60 1,7 1,9 1,6 1,6
Четвертая 18 - 40 2,2 2,4 2,0 2,0
40 - 60 2,0 2,2 1,7 1,8
Юноши 14 - 17 1,9
Девушки 14 - 17 1,7
Пожилые 60 - 70 1,4 1,5 1,2 1,3
Старые 70 1,3 1,1
Дети (без разделения по полу)
Дети 0,5 - 1,0 0,5
Дети 1 - 1,5 0,8
Дети 1,5 - 2 0,9
Дети 3 - 4 1,1
Дети 5 - 6 1,2
Дети 7 - 10 1,4
Дети 11 - 13 1,7

Для наиболее часто используемых в эксперименте лабораторных животных можно ориентироваться на следующие величины потребности в тиамине: для голубя - 0,125 мг на 100 г корма, для собаки - 0,027-0,075 мг, для мыши - 5-10 мкг, для крысы - 20-60 мкг, для кошки - 50 мкг на 100 г в сутки.

Таким образом, решающим критерием обеспеченности организма тиамином является достоверность определения наличия или отсутствия витаминной недостаточности у обследуемых. Важными показателями наряду с определением самого витамина в данном случае являются метаболиты (альфа-кетокислоты), обмен которых зависит от ТДФ-содержащих ферментов или сами ферменты (дегидрогеназы, транскетолаза). Учитывая специфику клинических и экспериментальных исследований, рассмотрим кратко ценность перечисленных показателей в приложении к некоторым конкретным условиям и характеру материала, подвергаемого анализу.

Исследование мочи

Как уже отмечалось, у людей содержание витамина в суточной моче меньше 100 мкг принимается большинством авторов как свидетельство недостаточности тиамина. Однако при нормальном поступлении витамина с пищей его выведение с мочой зависит еще от характера медикаментозного лечения (если речь идет о больном) и состояния выделительной функции почек. Отдельные лечебные препараты могут резко снижать, а другие усиливать выведение витамина. Повышенная экскреция тиамина не всегда может восприниматься как свидетельство насыщенности витамином, так как причиной может быть нарушение механизмов реабсорбции в канальцевом аппарате почек или недостаточное депонирование витамина вследствие нарушения процессов его фосфорилирования. С другой стороны, низкое содержание тиамина в моче больных людей может быть обусловлено не его недостатком, а результатом частичного ограничения приема пищи, содержащей соответственно меньшее количество витамина. В связи с этим с целью получения дополнительных сведений о состоянии внутритканевого обмена тиамина довольно широко распространен метод исследования мочи после парентеральных нагрузок. Удобно проводить трехкратную нагрузку, исходя из дозы в 0,5 мг витамина на 1 кг веса больного, округляя вес до десятков килограммов.

Все методы определения тиамина обязательно должны проверяться на воспроизводимость получаемых с их помощью величин в случае присутствия в моче больных медикаментозных средств. Известно, например, что салицилаты, хинин и другие препараты могут вызывать дополнительную флюоресценцию, мешая правильной интерпретации данных флюориметрии, а ПАСК, взаимодействуя непосредственно с феррициа-нидом, резко снижает выход тиохрома. В экспериментальных условиях удобным показателем обеспеченности тиамином является определение уровня пирувата (ПК) в моче. Необходимо помнить, что лишь выраженные формы гиповитаминоза В1 сопровождаются отчетливым накоплением этой кетокислоты, которая определяется чаще всего как бисульфитсвязывающие вещества (БСВ). При патологических состояниях, особенно когда речь идет о больных людях, уровень БСВ, как и количество самой ПК в моче, варьирует в весьма широких пределах в зависимости от интенсивности протекания углеводного обмена, а последний контролируется большим количеством различных факторов, прямо не связанных с тиамином. Показатели уровня БСВ или ПК в моче в подобных ситуациях должны использоваться лишь как дополнительные данные.

Исследование крови

Основной присутствующей в крови формой витамина является ТДФ. Определения, произведенные у здоровых людей различными методами, дают в среднем одни и те же величины, но с колебаниями в довольно широких пределах (4-12 мкг%). Как достоверный признак недостаточности витамина, если ориентироваться только на этот показатель, можно считать лишь величины ниже 2-4 мкг%. Менее приемлемо определение только общего тиамина. В норме это не вносит существенной ошибки, так как свободного витамина очень мало- 0,3-0,9 мкг%. Количество его в сыворотке крови может резко возрастать при ухудшении выделительной функции почек при гипертонической болезни или в связи с нарушением процесса фосфорилирования витамина. Если упомянутые ограничения отсутствуют, то можно считать, что уровень тиамина в крови достаточно адекватно отражает обеспеченность им организма.

При исследовании крови, как и мочи, широко используется определение концентрации ПК. Важно применять для этих целей более специфический метод (ферментативный, хроматографический), так как реакции с бисульфитом или салициловым альдегидом дают завышенные результаты. Если ПК определяют для характеристики обмена витамина у больных, необходимо считаться с большим количеством факторов, не связанных с этим витамином, но активно влияющих на обмен, а следовательно, и уровень ПК в организме. Так, увеличение уровня ПК крови наблюдается при введении адреналина, АКТГ, при физической нагрузке, электрическом и инсулиновом шоке, недостаточности витаминов А и D, многих инфекционных и других заболеваниях, когда часто трудно заподозрить недостаточность тиамина. В эксперименте показано, что в ряде случаев уровень ПК крови больше коррелирует с гиперфункцией системы гипофиз - кора надпочечников, чем с обеспеченностью организма витамином.

Поскольку имеются трудности выявления истинного состояния тиаминового обмена по содержанию в крови самого витамина или уровню кетокислот, можно использовать для этих целей определение активности ТДФ-содержащих ферментов, в частности транскетолазы (ТК) эритроцитов. Для этого фермента даже незначительные сдвиги в концентрации кофермента заметно сказываются на активности всей системы. Наблюдения в клинике и при профилактических осмотрах населения, эксперименты на животных подтверждают весьма высокую чувствительность ТК даже к легкой недостаточности витамина. Фермент реагирует даже тогда, когда изменения со стороны уровня ПК или самого витамина в крови не показательны. Для блльщей точности сейчас используется метод дополнительной активации ТК добавляемой in vitro к гемолизату эритроцитов ТДФ. Стимуляция ТК до 15% исходной активности принимается соответствующей норме, от 15 до 25%-гиповитаминозу, более 20-25% - авитаминозу.

Нарушение витаминного равновесия и обмена тиамина

Повсеместно распространенное в XIX и в начале XX столетия в странах Дальнего Востока заболевание (бери-бери), являющееся классической формой авитаминоза В1, встречается сейчас значительно реже. Различают три формы бери-бери, соответствующие наиболее ярко выраженным проявлениям болезни:

  • сухую, или паралитическую (преобладают неврологические поражения - парезы, параличи и др.);
  • отечную (нарушения наблюдаются в основном со стороны циркуляторного аппарата крови);
  • острую, или сердечную (быстро заканчивается смертью на фоне тяжелой правожелудочковой недостаточности).

Практически перечисленные формы в чистом виде встречаются редко, а наблюдаются частичные их взаимопереходы. В современных условиях чаще всего встречаются различные по глубине гиповитаминозы B1. Симптоматика последних носит, как правило, довольно общий характер (одышка, сердцебиение, боли в области сердца, слабость, быстрая утомляемость, потеря аппетита, понижение общей сопротивляемости к другим заболеваниям и т. п.) и не может быть полностью признана типичной для недостаточности только тиамина, так как встречается и при многих других гиповитаминозах. По существу следует еще раз констатировать, что перечисленные симптомы отнести на счет гиповитаминоза В1 окончательно можно только на основании специальных биохимических исследований (см. выше). Отдельного рассмотрения требуют вторичные гиповитаминозы В1, возникающие как результат нарушения баланса или обмена витамина. К первой группе следует отнести случаи повышенного, расходования витамина при обычном его поступлении с пищей (тиреотоксикоз и некоторые другие заболевания, избыток углеводов в диете), нарушение процессов всасывания из желудочно-кишечного тракта или приводящее к тем же конечным результатам усиленное выведение витамина в мочу после длительного применения диуретических средств. Вторая группа нарушений связывается большинством авторов с ослаблением процессов внутритканевого фосфорилирования тиамина или eго протеидизации, как при лечебном применении гидразидов изоникотиновой кислоты или при белковом голодании.

Разнообразие перечисленных выше причин (по существу эндогенного порядка) обусловливает развитие недостаточности тиамина, которая в значительной степени устраняется в первой группе нарушений дополнительным введением витамина в повышенных дозах. Гиповитаминозы второго типа часто не поддаются прямой витаминотерапии и требуют предварительного устранения исходных основных нарушений в обмене собственно тиамина или введения в организм коферментных производных.

Объединение столь различных по этиологии форм нарушения обеспеченности организма тиамином в одну группу так называемых эндогенных гиповитаминозов представляется не совсем удачным. Для нарушений обменного порядка более подходящим является термин «дисвитаминоз», т. е. просто констатация факта нарушения обмена витамина при нормальном, достаточном его поступлении в организм. Нечто подобное наблюдается при конкуренции витаминов друг с другом, когда избыточное поступление одного из витаминов тормозит обмен и протеидизацию другого.

Профилактическое и лечебное применение тиамина и его производных

Показания и противопоказания к тиаминотерапии

При обосновании главных принципов лечебного применения витамина или его производных приходится исходить из нескольких предпосылок. В случае, когда речь идет о недостаточности по типу авитаминоза или гиповитаминоза, лечение ведется по обычным правилам заместительной терапии. Сложнее обстоит дело с дисвитаминозами, возникающими на фоне какого-либо патологического процесса или в результате воздействия на обмен тиамина различных экзогенных факторов (лечебные препараты, химические яды, физические агенты и др.), когда успех в значительной мере зависит от этиотропной терапии или применения соответствующих препаратов витамина (кокарбоксилаза, дисульфидные производные). Анализируя имеющиеся данные, можно считать, что предпосылки к лечебному применению тиамина имеются при различных по этиологии поражениях желудочно-кишечного тракта, печени, нервно-психических заболеваниях, сердечно-сосудистой недостаточности, гипотонии, ревматизме. Практический опыт оправдывает применение витамина при рахите, хроническом тонзиллите, многих кожных и инфекционных заболеваниях, сахарном диабете, гипертиреозе, туберкулезе. Достаточно обосновано профилактическое введение тиамина спортсменам, летчикам накануне ожидаемых перегрузок, рабочим, имеющим дело с производственными ядами (окись углерода, аммиак, окислы азота и др.), в акушерской практике накануне родов и в других случаях.

Вторым направлением в обосновании тиаминотерапии может быть учет известных биохимических функций этого витамина. В таком случае вопрос надо решать, исходя из конкретных данных о нарушении в организме больного тех обменных процессов, которые мы можем корригировать введениями витамина. По существу речь должна идти о коферментной и некоферментной активности тиамина, т. е. о тех его функциях, которые детально рассмотрены выше. Изначально основными показаниями к применению тиамина при различных заболеваниях были симптомы, типичные для бери-бери: невриты, невралгии, параличи, боли различной этиологии, расстройства нервной и сердечной деятельности. В настоящее время при обосновании необходимости в витаминотерапии в основном исходят из обменных нарушений (ацидоз, диабетическая кома, пируватемия, токсемия беременных).

Тиамин применяется при периферических невритах, общих расстройствах в связи с недостаточностью питания, анорексии, энцефалопатии Вернике, витаминной недостаточности, хроническом алкоголизме, алкогольных невритах, сердечно-сосудистой недостаточности, нарушении деятельности желудочно-кишечного тракта.

При всех перечисленных заболеваниях (кроме энцефалопатии Вернике) тиамин примерно в равной степени используется энтерально и парентерально в дозах, колеблющихся от 5 до 100 мг в сутки. В настоящее время широко внедрены в клиническую практику некоторые лечебные препараты витамина: тиамин-фосфаты (ТФ) и дисульфидные производные. После разработки простого метода синтетического получения ТФ как лечебный препарат быстро завоевала популярность так называемая кокарбоксилаза (ТДФ). Поводом к внедрению ТДФ в лечебную практику явился хорошо известный факт коферментной активности именно этого производного витамина. Кроме того, токсичность ТФ в 2,5-4 раза меньше, чем таковая у свободного тиамина. Есть и еще одно существенное преимущество у ТФ - более полная усвояемость. Так у людей после эквимолярных внутримышечных введений тиамина, ТМФ и ТДФ количество витамина, оказавшееся в моче за 24 часа, составило соответственно 33, 12 и 7% от введенной дозы.

Применение ТФ наиболее результативно в тех случаях, когда необходимо проводить витаминотерапию у больных с ослабленными процессами фосфорилирования. Так, при туберкулезе легких инъекции тиамина оказываются малоэффективными: за сутки с мочой может выводиться до 70% витамина. Если больные получали эквивалентные дозы ТДФ, то выведение витамина из организма было меньшим - 11%. При парентеральном введении, особенно внутривенном, ТДФ дает эффекты обменного порядка, которые не наблюдается после инъекций свободного витамина. Очень часто ТДФ вызывает сдвиги, аналогичные наблюдаемым при применении АТФ или фосфокреатина.

Наиболее многочисленны данные, касающиеся применения ТДФ при сахарном диабете и сердечно-сосудистой недостаточности. Назначение ТДФ (по 50-100 мг внутривенно) резко снизило смертность от диабетической комы и оказалось весьма эффективным средством при лечении ацидотических состояний. ТДФ не только усиливает действие инсулина, но и снимает инсулинорезистентность у некоторых больных. Наряду с нормализацией традиционных показателей, характеризующих тяжесть сахарного диабета (гликемия, глюкозурия, кетоз), ТДФ оказывает отчетливое нормализующее действие в отношении уровня холестерина и фосфолипидов корви. При сердечно-сосудистой недостаточности даже однократные инъекции ТДФ быстро нормализуют повышенный в крови больных уровень пирувата и молочной кислоты.

ТДФ заметно активирует потребление миокардом питательных веществ из крови, быстро улучшая показатели электрокардиограммы. Подобное действие ТДФ широко используется при лечении различных функциональных аномалий со стороны сердца (экстрасистолия, некоторые формы аритмий). Описаны выраженные положительные изменения показателей электрокардиограммы при артеросклерозе, гипертонической болезни, некоторых эндокринных и почечных заболеваниях, при инфарктах миокарда, пороках сердечных клапанов в тех случаях, когда ведущим фактором патологии являлось нарушение трофики сердца. Также показано, что ТДФ эффективнее тиамина при заболеваниях периферической и центральной нервной системы, при рассеянном склерозе, бронхиальной астме и многих других заболеваниях.

Широкое распространение получили также различные дисульфидные производные витамина, эффективность которых объясняется лучшей усвояемостью дисульфидных форм в кишечном тракте. Одним из преимуществ этих производных считается их значительно меньшая токсичность по сравнению с тиамином.


Витамины - это низкомолекулярные органические вещества разнообразного строения. Объединены в одну группу по следующим признакам:

1. Витамины абсолютно необходимы организму и в очень небольших количествах.

2. Витамины не синтезируются в организме и должны поступать извне или синтезироваться микрофлорой кишечника.

Витамины играют одинаковую роль во всех формах жизни, но высшие животные утратили способность к их синтезу. Например, аскорбиновая кислота (витамин ”С”) не синтезируется в организмах человека, обезьян и морской свинки, так как в процессе эволюции была утеряна ферментная система синтеза этого витамина из глюкозы. АВИТАМИНОЗ - это заболевание, которое развивается при полном отсутствии того или иного витамина в организме. В настоящее время авитаминозы обычно не встречаются, а бывают ГИПОВИТАМИНОЗЫ при недостатке витамина в организме.

ПРИЧИНЫ РАЗВИТИЯ ГИПО- И АВИТАМИНОЗОВ

Все причины можно разделить на внешние и внутренние.

ВНЕШНИЕ причины гиповитаминозов:

1. Недостаточное содержание витамина в пище (при неправильной обработке пищи, при неправильном хранении пищевых продуктов)

2. Состав рациона питания (например, отсутствие в рационе овощей и фруктов)

3. Не учитывается потребность в том или ином витамине. Например, при белковой диете возрастает потребность в витамине “РР” (при обычном питании он может частично синтезироваться из триптофана). Если человек потребляет много белковой пищи, то может увеличиться потребность в витамине “В 6 “ и снизиться потребность в витамине РР.

4. Социальные причины: урбанизация населения, питание исключительно высокоочищенной и консервированной пищей; наличие антивитаминов в пище. Социальные причины развития авитаминозов существуют в мире. Например, в отдаленных районах Севера, в рационе людей мало овощей и фруктов. Урбанизация также имеет значение, т.к. в пищу потребляется много консервированных и рафинированнных продуктов. В крупных городах люди недостаточно обеспечены солнечным светом - поэтому может быть гиповитаминоз Д.

ВНУТРЕННИЕ причины гиповитаминозов:

1. Физиологическая повышенная потребность в витаминах, например, в период беременности, при тяжелом физическом труде.

2. Длительные тяжелые инфекционные заболевания, а также период выздоровления;

3. Нарушение всасывания витаминов при некоторых заболеваниях ЖКТ, например, при желчнокаменной болезни нарушается всасывание жирорастворимых витаминов;

4. Дисбактериоз кишечника. Имеет значение, так как некоторые витамины синтезируются полностью микрофлорой кишечника (это витамины В 3 , В c , В 6 , Н, В 12 и К);

5. Генетические дефекты некоторых ферментативных систем. Например, витамин Д-резистентный рахит развивается у детей при недостатке ферментов, участвующих в образовании активной формы витамина Д (1,25-диоксихолекальциферола).

КЛАССИФИКАЦИЯ ВИТАМИНОВ

1. Водорастворимые витамины. К этой группе относят витамины С, Р, В 1 , В 2 , В 3 , В C , В 6 , В 12 , РР, Н.

2. Жирорастворимые витамины: А, Д, Е, К.

Большинство водорастворимых витаминов должно поступать регулярно с пищей, т.к. они быстро выводятся или разрушаются в организме.

Жирорастворимые витамины могут депонироваться в организме. Кроме того, они плохо выводятся, поэтому иногда при избытке жирорастворимых витаминов наблюдаются ГИПЕРВИТАМИНОЗЫ - заболевания, связанные с интоксикацией организма высокими дозами жирорастворимых витаминов. Такие заболевания описаны для витаминов А и Д.

Для большинства витаминов известно, что их производные входят в состав коферментов и простетических групп ферментов. Для некоторых витаминов (витамин С) точно известно, в каких реакциях они участвуют, но коферментная функция пока не открыта.

ЖИРОРАСТВОРИМЫЕ ВИТАМИНЫ

ВИТАМИН “А”

(ретинол, антиксерофтальмический)

Необходимо знать формулу витамина А.

Наиболее ранний и специфический признак гиповитаминоза А - гемералопия ("куриная слепота") - нарушение сумеречного зрения . Возникает из-за недостатка зрительного пигмента - родопсина. Родопсин содержит в качестве активной группы ретиналь (альдегид витамина А) - находится в палочках сетчатки. Эти клетки (палочки) воспринимают световые сигналы низкой интенсивности.

РОДОПСИН = опсин (белок) + цис-ретиналь.

При возбуждении родопсина светом, цис-ретиналь, в результате ферментативных перестроек внутри молекулы переходит в полностью-транс-ретиналь (на свету). Это приводит к конформационной перестройке всей молекулы родопсина. Родопсин диссоциирует на опсин и транс-ретиналь, что является пусковым механизмом, возбуждающим в окончаниях зрительного нерва импульс, который затем передается в мозг.

В темноте, в результате ферментативных реакций транс-ретиналь вновь превращается в цис-ретиналь и, соединяясь с опсином, образует родопсин.

Витамин А также влияет на процессы роста и развития покровного эпителия . Поэтому при авитаминозе наблюдается поражение кожи, слизистых оболочек и глаз, которое проявляется в патологическом ороговении кожи и слизистых. У больных развивается ксерофтальмия - сухость роговой оболочки глаза, т.к. происходит закупорка слезного канала в результате ороговения эпителия. Так как глаз перестает омываться слезой, которая обладает бактерицидным действием, развиваются конъюнктивиты, изъязвление и размягчение роговицы -кератомаляция . При авитаминозе А может быть также поражение слизистой ЖКТ, дыхательных и мочеполовых путей. Нарушается устойчивость всех тканей к инфекциям. При развитии авитаминоза в детстве - задержка роста.

В настоящее время показано участие витамина А в защите мембран клеток от окислителей - т.е. витамин А обладает антиоксидантной функцией .

Витамин А запасается в печени.

Пищевые источники - печень морских рыб и млекопитающих, желток яиц, цельное молоко, рыбий жир. Овощи и фрукты красно-оранжевого цвета (томаты, морковь и др.) содержат много каротина - водорастворимого предшественника витамина А, имеющего в молекуле 2 иононовых кольца.

В настоящее время, гиповитаминоз А наблюдается у людей с заболеваниями кишечника, поджелудочной железы, при нарушении желчевыделительной функции печени, то есть при заболеваниях, при которых нарушается всасывание жира. Высокие дозы витамина А могут приводить к токсическим эффектам. Характерные проявления гипервитаминоза - воспаление глаз, гиперкератоз, выпадение волос, диспептические явления.

Суточная потребность в витамине А - 1-2.5 мг, в каротине - в 2 раза больше.

ВИТАМИН Д (холекальциферол, антирахитный)

(формулу витамина Д 3 необходимо знать)

Сам витамин Д не обладает витаминной активностью, но он служит предшественником 1,25-дигидрокси-холекальциферола (1,25-дигидроксивитамина Д 3).

Синтез активной формы протекает в два этапа - в печени присоединяется оксигруппа в положении 25, а затем в почках - оксигруппа в положении 1. Из почек активный витамин Д 3 переносится в другие органы и ткани - главным образом в тонкий кишечник и в кости, где витамин Д участвует в регуляции обмена Са и Р. Недостаток витамина Д приводит к развитию нарушений фосфорно-кальциевого обмена и процессов окостенения. В результате у детей развивается рахит , связанный с недостатком Са и Р. Характерные признаки рахита - остеомаляция ("размягчение" костей - запаздывание окостенения), запаздывание закрытия родничков, деформации грудной клетки, позвоночника, конечностей. У таких детей снижен мышечный тонус, наблюдается раздражительность, потливость, выпадение волос.

У взрослых при недостатке витамина Д наблюдается остеопороз - разрежение костной ткани в результате вымывания солей кальция из скелета.

Потребность в витамине Д повышается у беременных.

При благоприятных условиях витамин Д может синтезироваться в организме человека из предшественника - 7-дегидрохолестерина под действием ультрафиолетовых лучей (фотохимическая реакция) в результате разрыва связи в кольце В.

Пищевые источники - рыба, рыбий жир, печень, сливочное масло, желток яиц.

Суточная доза витамина Д 3 - 10-20 мкг. Высокие дозы витамина Д (выше 1,5 мг в сутки) крайне токсичны. При гипервитаминозе кроме интоксикации наблюдается отложение гидроксиапатита в некоторых внутренних органах (кальцификация почек, кровеносных сосудов).

ВИТАМИН К (филлохинон).

(Знать строение хинонового кольца витамина К и радикал!)

Витамин К необходим для нормального синтеза протромбина (фактор II) - предшественника одного из белков системы свертывания - тромбина. Тромбин - это фермент, который катализирует реакцию превращения фибриногена в фибрин - основу кровяного сгустка при активации системы светрывания крови.

При недостатке витамина К синтезируется дефектная молекула протромбина и ряда других факторов свертывания крови. Причина - нарушение ферментативного карбоксилирования глутаминовой кислоты, необходимой для связывания Са 2+ белками системы свертывания. Основное проявление недостаточности - нарушение свертывания крови , в результате которого происходят самопроизвольные паренхиматозные и капиллярные кровотечения.

Авитаминоз, как правило связан с нарушением выделения желчи в ЖКТ (при желчнокаменной болезни).

Пищевые источники - ягоды рябины, капуста, арахисовое масло и др. растительные масла. Витамин К также синтезируется микрофлорой кишечника, поэтому одна из причин гиповитаминозов при недостатке витамина в пище - дизбактериоз кишечника (например, при антибиотикотерапии).

Если больной страдает гиповитаминозом К, например, при некоторых видах желтух, то операции - даже удаление зуба - могут сопровождаться длительным кровотечением.

Синтезирован водорастворимый аналог витамина К - викасол, который используют при лечении гиповитаминозов, связанных с нарушением всасывания витамина К из кишечника.

Известны природные антивитамины К - например, ДИКУМАРИН, САЛИЦИЛОВАЯ кислота, которые применяют при лечении тромбозов, т.к. антивитамины К способны снижать количество протромбина в крови.

Суточная потребность точно не установлена , т.к. витамин синтезируется микрофлорой. Считают, что в сутки потребность около 1 мг .

ВИТАМИН Е (токоферол, витамин размножения).

(Знать строение циклической структуры витамина Е!)

Является антиоксидантом . При недостаточности витамина Е - дегенеративные изменения в печени, нарушение функций биологических мембран. Витамин Е предохраняет липиды клеточных мембран от окисления активными формами кислорода. Авитаминоз проявляется при очень длительном голодании или при стойком нарушении желчевыделительной функции печени (нарушение всасывания жиров). При этом наблюдаются шелушение кожи, мышечная слабость, стерильность - нарушением функции размножения. Поскольку витамин Е широко распространен в природе (растительные масла, семена пшеницы и др. злаков, сливочное масло), то авитаминоз встречается редко.

Суточная потребность - около 10-30 мг .

ВИТАМИН “С”

(аскорбиновая кислота, антицинготный, антискорбутный)

В 1932 г. впервые выделен из сока лимона, через два года искусственно синтезирован. Важное свойство - способность аскорбиновой кислоты легко окисляться.

Биологическая роль витамина “С”

(связана с его участием в окислительно-восстановительных реакциях)

1. Витамин С, являясь сильным восстановителем, играет роль кофактора в реакциях окислительного гидроксилирования, что необходимо для окисления аминокислот пролина и лизина в оксипролин и в оксилизин в процессе биосинтеза коллагена. Коллаген может синтезироваться и без участия витамина С, но такой коллаген не является полноценным (не формирутся его нормальная структура). Поэтому при недостатке витамина С ткани, содержащие много коллагена, становятся непрочными, ломкими. В первую очередь нарушается структура стенок сосудов, повышается их проницаемость, наблюдаются кровоизлияния под кожу и под слизистые оболочки.

2. Участвует в синтезе стероидных гормонов надпочечников.

3. Необходим для всасывания железа.

4. Участвует в неспецифической иммунной защите организма.

Авитаминоз “С” - цинга. Проявления цинги: болезненность, рыхлость и кровоточивость десен, расшатывание зубов, нарушение целостности капилляров - подкожные кровоизлияния, отечность и болезненность суставов, нарушение заживления ран, анемия. Иногда цинга развивается у новорожденных на искусственном вскармливании пастеризованным молоком, в которое не добавлен витамин С. В основе всех изменений при цинге, за исключением анемии, лежит нарушение синтеза коллагена. Анемия связана с нарушением всасывания железа.

В настоящее время цинга не распространена, но весной у многих людей наблюдается недостаток (гиповитаминоз) витамина “С”, что проявляется, например, повышенной утомляемостью, понижением иммунитета.

Основные источники витамина “С” : свежие зеленые овощи и фрукты.

Следует помнить, что витамин С легко разрушается при нагревании, особенно в щелочной среде в присутствии кислорода, ионов железа и меди. Хорошо сохраняется в кислой среде (в квашеной капусте, в клюкве, в ягодах черной смородины и плодах шиповника). При длительном хранении овощей и фруктов содержание в них витамина “С” уменьшается.

Источником витамина С является также хвоя ели и сосны.

Суточная потребность - около 100 мг в сутки.

Лечебная доза - до 1-2 г в сутки.

ВИТАМИН “Р”

(рутин, витамин проницаемости)

Биологическая роль - стабилизация основного вещества соединительной ткани, путем ингибирования фермента гиалуронидазы. При недостатке витамина Р у людей повышается проницаемость кровеносных сосудов, которое сопровождается кровоизлияниями и кровотечениями. Витамин Р усиливает действие витамина С (снижает потребность в нем)

Пищевые источники : зеленые овощи и фрукты, кожура лимона.

Суточная потребность - не установлена

В И Т А М И Н Ы Г Р У П П Ы "B"

ВИТАМИН B 1

(тиамин, антиневритный)

Его формулу необходимо знать.

Производное вит.В 1 - ТДФ (ТПФ) является коферментом пируватдегидрогеназного комплекса (фермента пируваткарбоксилазы), альфа-кетоглутаратдегидрогеназного комплекса и фермента транскетолазы (фермента альфа-тотаратдекарбоксилазы), а также входит в состав кофермента транскетолаз - ферментов неокислительного этапа ГМФ-пути.

При недостаточности вит.В 1 может возникнуть болезнь "бери-бери" , характерная для тех стран Востока, где основным продуктом питания служит очищенный рис и кукуруза. Для этого заболевания характерна мышечная слабость, нарушение моторики кишечника, потеря аппетита, истощение, периферический неврит (характерный признак - человеку больно вставать на стопу - больные ходят “на цыпочках”), спутанность сознания, нарушения работы сердечно-сосудистой системы. При "бери-бери" повышается содержание пирувата в крови.

Пищевые источники витамина В 1 - ржаной хлеб. В кукурузе, рисе, пшеничном хлебе витамин В 1 практически отсутствует. Это объясняется тем, что в зерне ржи тиамин распределен по всему зерну, а в других злаках он содержится только в оболочке зерен.

Суточная потребность - 1.5 мг/сутки.

ВИТАМИН В 2 (рибофлавин)

Витамин В 2 входит в состав флавинмононуклеотида (ФМН) и флавинадениндинуклеотида (ФАД) - простетических групп флавиновых ферментов.

Его биологическая функция в организме - участие в окислительно-восстановительных реакциях в составе флавопротеидов (ФП).

Недостаточность этого витамина часто встречается в России. Особенно часто бывает у людей, которые не употребляют в пищу черный ржаной хлеб. Проявление гиповитаминоза: ангулярные дерматиты в углах рта (“заеда”), глаз. Часто это сопровождается кератитами (воспаление роговицы). В очень тяжелых случаях бывает анемия. Очень часто сочетаются сочетанные гиповитаминозы витаминов "В 2 " и "РР",так как эти витамины содержатся в одних и тех же продуктах.

Пищевые источники : ржаной хлеб, молоко, печень, яйца, овощи желтого цвета, дрожжи.

Суточная потребность : 2-4 мг/сутки.

ФОЛИЕВАЯ КИСЛОТА (В C)

В составе 3 структурных единицы: птеридин, ПАБК (парааминобензойная кислота) и глутаминовая кислота.

Часто ПАБК (парааминобензойную кислоту) тоже называют витамином. Но это неверно. ПАБК - это фактор роста для микроорганизмов, которые синтезируют фолиевую кислоту.

Активный С 1 извлекается из глицина или серина с помощью фермента, в небелковой части которого содержится витамин В c - фолиевая кислота. Фолиевая кислота два раза восстанавливается в организме (к ней присоединяется водород).

ТГФК является коферментом ферментов, переносящих одноуглеродные радикалы.

Из метилен-ТГФК могут образовываться все другие формы активного С 1: формил-ТГФК, метил-ТГФК, метен-ТГФК, оксиметил-ТГФК в результате реакций окисления или восстановления метилен-ТГФК.

Фолиевая кислота в виде тетрагидрофолиевой кислоты является коферментом, участвующим в ферментативных реакциях, связанных с переносом активных одноуглеродных радикалов. Например: биосинтез пуриновых и пиримидиновых мононуклеотидов.

При авитаминозе у человека наблюдается макроцитарная анемия, при которой нарушен синтез ДНК в клетках красного костного мозга, для больных характерна потеря веса.

Пищевые источники: зеленые листья овощей, дрожжи, мясо, шпинат.

Авитаминозы встречаются редко, так как потребность в этом витамине компенсируется за счет микрофлоры кишечника. При некоторых заболеваниях кишечника, когда возникают дисбактериозы, нарушается всасывание фолиевой кислоты.

Суточная потребность: 0.2 - 0.4 мг.

ВИТАМИН В 6 (пиридоксин)

В 6 в форме пиридоксальфосфата является простетической группой трансаминаз и декарбоксилаз аминокислот. Он необходим и для некоторых реакций обмена аминокислот. Поэтому при авитаминозе В 6 наблюдаются нарушения обмена аминокислот.

В6 также участвует в реакциях синтеза гема гемоглобина (синтез d-аминолевулиновой кислоты). Поэтому при недостатке В 6 у человека развивается анемия.

Кроме анемии, наблюдаются дерматиты. Недостаток В 6 может развиться у больных туберкулезом, потому что этих больных лечат препаратами, синтезированными на основе изониазида - это антагонисты витамина В 6 .

Пищевые источники : ржаной хлеб, горох, картофель, мясо, печень, почки.

Суточная потребность взрослого человека: 0.15-0.20 мг.

ПАНТОТЕНОВАЯ КИСЛОТА (витамин В 3)

Молекула пантотеновой кислоты состоит из бета-аланина и 2,4-дигидрокси-диметил-масляной кислоты. Формулу знать необязательно.

Важность этого витамина в том, что он входит в состав HS-KoA (кофермента ацилирования).

Строение КоА: а) тиоэтиламин б) пантотеновая кислота в) 3-фосфоаденозин-5-дифосфат.

HSКоА - кофермент ацилирования, то есть входит в состав ферментов, которые катализируют перенос ацильных остатков. Поэтому В 3 участвует в бета-окислении жирных кислот, окислительном декарбоксилировании альфа-кетокислот, биосинтезе нейтрального жира, липоидов, стероидов, гема, ацетилхолина.

При недостатке пантотеновой кислоты при дисбактериозе у человека развиваются дерматиты , в тяжелых случаях - изменения со стороны желез внутренней секреции, в том числе надпочечников. Также наблюдается депигментация волос, истощение.

Пищевые источники : яичный желток, печень, дрожжи, мясо, молоко.

Суточная потребность : 10мг/сут.

ВИТАМИН В 12 (кобаламин)

(антианемический витамин)

Формулу знать необязательно - стр.158 учебника Коровкина или стр.168 учебника Николаева.

Имеет сложное строение, структура молекулы похожа на гем, но вместо железа - кобальт. В состав В 12 входит также нуклеотидная структура, похожая на АМФ.

Производное витамина В 12 является коферментом. Этот витамин необходим для синтеза нуклеиновых кислот. Он обеспечивает переход оксирибонуклеотидов в дезоксирибонуклеотиды (РНК в ДНК).

Недостаток этого витамина может привести к развитию злокачественной тромбоцитарной анемии, нарушениям функции центральной нервной системы.

Как правило, встречается сочетанный недостаток витамина В 12 и фолиевой кислоты. Анемия развивается не потому, что В 12 мало поступает с пищей, а при отсутствии особого гликопротеина, который называется "внутренний фактор Кастла" и вырабатывается в желудке. Фактор Кастла необходим для всасывания витамина В 12 . При удалении части желудка, гастритах уменьшается выработка фактора Кастла.

Это единственный витамин, который синтезируется только микрофлорой кишечника.

Это единственный водорастворимый витамин, который депонируется в организме (в печени).

Суточная потребность: 2.5-5 мкг.

ВИТАМИН РР (антипеллагрический)

Химическое название: никотинамид. Входит в состав НАД и НАДФ, то есть входит в состав коферментов никотинамидных дегидрогеназ. Его роль - участие в окислительно-восстановительных реакциях. При недостатке РР развивается пеллагра . При пеллагре наблюдаются три “Д”:

Дерматит

Деменция (поражение центральной нервной системы)

Источники РР: мясо, бобовые, орехи, рыба и вообще продукты, богатые белком.

Витамин РР может частично синтезироваться из триптофана.

Если человек съедает много белковой пищи, то потребность в этом витамине снижается. Из 60 гр. белка может синтезироваться 1 мг витамина РР.

Суточная потребность: 15-25 мг/сутки.

ВИТАМИН “Н” (БИОТИН)

Формулу знать обязательно.

В составе молекулы биотина имеются имидазоловое и тиоэфирное кольца, к ним присоединен радикал - валериановая кислота.

Витамин Н входит в состав ферментов карбоксилаз: Ацетил-КоА-карбоксилазы, пируваткарбоксилазы и других.

Всасыванию биотина в кишечнике препятствует овидин - белок, содержащийся в сырых яйцах. При термической обработке яиц происходит днатурация овидина.

При авитаминозе наблюдаются дерматиты, поражения ногтей, анемия. Синтезируется микрофлорой кишечника.

Авитаминозы, связанные с недостатком фолиевой кислоты (В c), пантотеновой кислоты (В 3), биотина (Н), пиридоксина (В 6), кобаламина (В 12) встречаются очень редко, поскольку эти витамины, так же, как и витамин к, синтезируются микрофлорой кишечника. Авитаминозы наблюдаются при дисбактериозе кишечника, при необычной диете или при нарушении всасывания из кишечника.



Витамин В1 , был первым витамином, выделенным в кристаллическом виде К. Функом в 1912 г. Позже был осуществлен его химический синтез. Свое название - тиамин - получил из-за наличия в составе его молекулы атома серы и аминогруппы.

Тиамин состоит из 2-х гетероциклических колец - аминопиримидинового и тиазолового. Последнее содержит каталитически активную функциональную группу - карбанион (относительно кислый углерод между серой и азотом).
Тиамин хорошо сохраняется в кислой среде и выдерживает нагревание до высокой температуры. В щелочной среде, например при выпечке теста с добавлением соды или карбоната аммония, он быстро разрушается.

В желудочно-кишечном тракте различные формы витамина гидролизуются с образованием свободного тиамина. Большая часть тиамина всасывается в тонком кишечнике с помощью специфического механизма активного транспорта, остальное его количество расщепляется тиаминазой кишечных бактерий. С током крови всосавшийся тиамин попадает вначале в печень, где фосфорилируется тиаминпирофосфокиназой, а затем переносится в другие органы и ткани.

Существует мнение, что основной транспортной формой тиамина является ТМФ.

Витамин В1, присутствует в различных органах и тканях как в форме свободного тиамина, так и его фосфорных зфиров: тиаминмонофосфата (ТМФ), тиаминдифосфата (ТДФ, синонимы: тиамин пирофосфат, ТПФ, кокарбоксилаза) и тиаминтрифосфата (ТТФ).

ТТФ - синтезируется в митохондриях с помощью фермента ТПФ-АТФ-фосотрансферазы:

Основной коферментной формой (60-80 % от общего внутриклеточного) является ТПФ. ТТФ играет важную роль в метаболизме нервной ткани. При нарушении его образования развивается некротизирующая энцефалопатия. После распада коферментов свободный тиамин выделяется с мочой и определяется в виде тиохрома.

Витамин В, в форме ТПФ является составной частью ферментов, катализирующих реакции прямого и окислительного декарбоксилирования кетокислот.

Участие ТПФ в реакциях декарбоксилирования кетокислот объясняется необходимостью усиления отрицательного заряда углеродного атома карбонила кетокислоты в переходном, нестабильном, состоянии:

Переходное состояние стабилизируется ТПФ путем делокализаиии отрицательного заряда карбо-аниона тиазолового кольца, играющего роль своеобразного электронного стока. Вследствие такого протонирования образуется активный ацетальдегид (гидроксиэтил-ТПФ).


2. Участие ТПФ в реакциях окислительного декарбоксилирования.
Окислительное декарбоксилирование ПВК катализирует пируватде-гидрогеназа. В состав пируватдегидрогеназного комплекса входит несколько структурно связанных ферментных белков и коферментов (см. с. 100). ТПФ катализирует начальную реакцию декарбоксилирования ПВК. Эта реакция идентична катализируемой пируватдекарбоксила-зой. Однако в отличие от последней, пируватдегидрогеназа не превращает промежуточный продукт гидроксиэтил-ТПФ в ацетальдегид. Вместо этого гидроксиэтильная группа переносится к следующему ферменту в мультиферментной структуре пируватдегидрогеназного комплекса.
Окислительное декарбоксилирование ПВК является одной из ключевых реакций в обмене углеводов. В результате этой реакции ПВК, образовавшаяся при окислении глюкозы, включается в главный метаболический путь клетки - цикл Кребса, где окисляется до углекислоты и воды с выделением энергии. Таким образом, благодаря реакции окислительного декарбоксилирования ПВК создаются условия для полного окисления углеводов и утилизации всей заключенной в них энергии. Кроме того, образующаяся при действии ПДГ-комплек-са активная форма уксусной кислоты служит источником для синтеза многих биологических продуктов: жирных кислот, холестерина, стероидных гормонов, ацетоновых тел и других.
Окислительное дскарбоксилирование а-кетоглутатарата катализирует а-кетоглутаратдегидрогеназа. Этот фермент является составной частью цикла Кребса. Строение и механизм действия а-кетоглугарат-дегидрогеназного комплекса схожи с пируватдегидрогеназой, т. е. ТПФ также катализирует начальный этап превращения кетокислоты. Таким образом, от степени обеспеченности клетки ТПФ зависит бесперебойная работа этого цикла.
Помимо окислительных превращений ПВК и а-кетоглутарата, ТПФ принимает участие в окислительном декарбоксилировании кетокислот с разветвленным углеродным скелетом (продукты дезаминирования ва-лина, изолейцина и лейцина). Эти реакции играют важную роль в процессе утилизации аминокислот и, следовательно, белков клеткой.

3. ТПФ - кофермент транскетолазы.
Транскетолаза - фермент пентозофосфатного пути окисления углеводов. Физиологическая роль этого пути заключается в том, что он является основным поставщиком NADFH*H+ и рибозо-5-фосфата. Транскетолаза переносит дву-углеродные фрагменты от ксилулозо-5-фосфата к рибозо-5-фосфату,
что приводит к образованию триозофосфата (3-фосфоглицеринового альдегида) и 7С сахара (седогептулозо-7-фосфата). ТПФ необходим для стабилизации карб-аниона, образующегося при расщеплении связи С2-С3 ксилулозо-5-фосфата.

4. Витамин В1 принимает участие в синтезе ацетилхолина, катализируя в пируватдегидрогеназной реакции образование ацетил-КоА - субстрата ацетилирования холина.

5. Помимо участия в ферментативных реакциях, тиамин может выполнять и некоферментные функции , конкретный механизм которых еще нуждается в уточнении. Полагают, что тиамин участвует в кроветворении, на что указывает наличие врожденных тиаминзависимых анемий, поддающихся лечению высокими дозами этого витамина, а также в стероидогенезе. Последнее обстоятельство позволяет объяснить некоторые эффекты препаратов витамина В, как опосредованных стресс-реакцией.

Переходное состояние стабилизируется ТПФ путем дслокализаиии отрицательного заряда карб-аниона тиазолового кольца, играющего роль своеобразного электронного стока. Вследствие такого протонирования образуется активный ацетальдегид (гидроксиэтил-ТПФ).

Аминокислотные остатки белков обладают слабой способностью осуществлять то, что с легкостью делает ТПФ, поэтому апобелки нуждаются в коферменте. ТПФ жестко связан с апоферментом мульти-ферментных комплексов дегидрогеназ а-оксикетокислот (см. ниже).

ЛЕКЦИЯ № 25

ФГБОУ ВО УГМУ Минздрава России
Кафедра биохимии
Дисциплина: Биохимия
ЛЕКЦИЯ № 25
Биохимия витаминов 1
Лектор: Гаврилов И.В.
Факультет: лечебно-профилактический,
Курс: 2
Екатеринбург, 2016г

План:

1.
2.
3.
4.
5.
Определение понятия витамины
Классификации витаминов
Общие механизмы метаболизма витаминов
Общая схема метаболизма витаминов
Водорастворимые витамины – отдельные
представители

Витамины
-
низкомолекулярные
органические
соединения
разнообразной
химической природы, полностью или частично
незаменимые для человека или животных,
участвующие в регуляции и катализе, и не
используемые в энергетических и пластических
целях.

Витаминоподобные вещества –
незаменимые или частично незаменимые
вещества, которые могут использоваться в
пластических целях и как источник энергии
(холин, оротовая кислота, витамин F, витамин
U (метилметионин), инозит, карнитин)

КЛАССИФИКАЦИЯ ВИТАМИНОВ

По физическим свойствам:
1. Водорастворимые витамины
Витамин РР (никотиновая кислота)
Витамин В1 (тиамин);
Витамин В2 (рибофлавин);
Витамин В5 (пантотеновая кислота);
Витамин В6 (пиридоксин);
Витамин В9, Вс (фолиевая кислота);
Витамин В12 (кобаламин);
Витамин Н (биотин);
Витамин С (аскорбиновая кислота);
Витамин Р (биофлавоноиды);

2. Жирорастворимые витамины
Витамин А (ретинол);
Витамин D (холекальциферол);
Витамин Е (токоферол);
Витамин К (филлохинон).
Витамин F (смесь полиненасыщенных
длинноцепочечных жирных кислот арахидоновая и др.)

КЛАССИФИКАЦИЯ ВИТАМИНОВ

По метаболическим свойствам:
Энзимовитамины (коферменты) (В1, В2, РР,
В6, В12, пантотеновая кислота, биотин,
фолиевая кислота);
Гормоновитамины (D2, D3, А);
Редокс-витамины или витаминыантиоксиданты (С, Е, А, липоевая кислота);

Буквенно
обозначение
Химическое название
Физиологическое
название
Витамин A
ретинол
антиксерофтальмический
Витамин B1
Витамин B2
тиамин
рибофлавин
антиневритный
витамин роста
Витамин B3
пантотеновая кислота
антидерматитный
Витамин B6
Витамин Bс, В9
Витамин B12
пиридоксин
фоллацин
кобаламин
антидерматитный
антианемический
антианемический
Витамин С
Аскорбиновая кислота
антицинготный
Витамин РР
ниацин
антипелларгический
Витамин H
биотин
Антисеборейный
витамин Р
рутин
фактор проницаемости
витамин D2
эргокальциферол
антирахитический
витамин D3
1,25-иоксихолекальциферол
антирахитический
витамин Е
токоферол
антистерильный
витамин К
нафтохиноны
антигеморрагический

Метаболизм витаминов в организме (общие положения)

В кишечнике водорастворимые витамины
всасываются активным транспортом,
жирорастворимые – в составе мицелл.
В крови водорастворимые витамины
транспортируются свободно или в
комплексе с белками, жирорастворимые
витамины – в составе липопротеинов и в
комплексе с белками.
Витамины из крови поступают в клетки
органов и тканей.

В печени и почках водорастворимые
витамины превращаются в коферменты.
В печени и коже некоторые витамины
превращаются в активные формы (D)
Активные формы витаминов реализуют свои
биохимические и физиологические эффекты.
Инактивируются как ксенобиотики и другие
продукты метаболизма.
Из организма витамины и их производные
выводятся в основном с мочой и калом.

План изучения (ответа) отдельных витаминов

1. содержание в пищевых продуктах (2-3 продукта
–без цифр)
2. химическая структура (основа, реакционно
способные группировки)
3. роль в метаболизме (2-3 уравнения хим.
реакций)
4. картина гипо- и гипервитаминоза (2-3 симптома,
вытекающих из механизма действия)
5. суточная потребность, профилактическая и
лечебная дозировка (несколько мг или доли
мг/сут, = профилактической дозировке, х 10 =
лечебная разовая (суточная) дозировка.

НИКОТИНОВАЯ КИСЛОТА –ВИТАМИН РР

COOH
CONH 2
N
N
Никотиновая кислота
Никотинамид
Витамин РР
Физико-химические свойства. Плохо растворим в воде, хорошо - в щелочах.
Суточная потребность
для взрослых 15-25мг,
для детей - 5-20 мг. Из растительных продуктов:
в свежих грибах - 6 мг %, в сушеных до 60 мг %.
в арахисе (10-16 мг %),
в злаках в грече (4 мг %),
пшене, ячневой (по 2 мг %),
овсяной и перловой крупах, а также в рисе (по 1,5 мг %)
В красной свекле - 1.6 мг %,
В картофеле (1-0,9 мг %), а в вареном 0.5 мг %.
в шпинате, томате, капусте, брюкве, баклажанах (0,50,7 мг %).

Из животных продуктов:
печень (15 мг %),
почки (12-15 мг %),
сердце (6-8 мг %),
мясо (5-8 мг %),
рыба (3 мг %).
витамин РР может синтезироваться
из триптофана (мало).

Метаболизм
ФРПФ ФФн
АТФ
ФФн
АТФ
АДФ
Никотинамид
никотинамидмононуклеотид
НАД+
НАДФ+
никотинамидмононуклеотид
НАД-пирофосфорилаза НАД-киназа
пирофосфорилаза

Роль в обмене веществ

Кофермент пиридинзависимых (НАД,
НАДФ) дегидрогеназ ЦТК, гликолиза,
ПФП и т.д.

Гиповитаминоз РР - пеллагра

«ТРИ Д»
1. Дерматит – воспаление кожи,
2. Диарея – жидкий стул,
3. Деменция – умственная
отсталость.

Пеллагра

ВИТАМИН B1 (ТИАМИН)

Cl-
NH 2
H2 +
C N
N
H3C
CH 3
H2
C CH 2OH
N
S
Витамин В1 (тиамин)
Физико-химические свойства. Водорастворим, разрушается при
термической обработке.
витамина В нетоксичен
Суточная потребность взрослого человека не менее 1,4-
2,4 мг.
Преобладание углеводов в пище повышает потребность
организма в витамине;
жиры, наоборот, резко уменьшают эту потребность.и
ч
н
а0
я,
(3
8
2
-
9
4
%
-
н
а
я
Содержание тиамина в мг% (мг/100г)
Х
л
е
б
и
з
ц
е
Дрожжи сухие пивные 5,0, пекарские 2,0
Пшеница (зародыши) 2,0
Ветчина 0,7
Соя 0,6
Крупа гречневая 0,5
Ячмень (зерно) 0,4
Пшеница (цельное зерно) 0,4
Печень свиная, крупного рогатого скота 0,4

Овес (зерно) 0,4
Крупа овсяная 0,3
Мука пшеничная (82-94%-ная) 0,3
Крупа ячневая 0,2
Мука ржаная цельного помола 0,2
Мясо (разное) 0,2
Хлеб ржаной 0,15
Кукуруза (цельное зерно) 0,15
Молоко коровье 0,05
Хлеб пшеничный из муки тонкого помола 0,03

Метаболизм
1. Всасывание: в кишечнике;
2. Транспорт: в свободном виде;
3. Активация: при участии тиаминкиназы и АТФ в
печени, почках, мозге и сердечной мышце витамин
В1 превращается в активную форму - кофермент
тиаминпирофосфат (ТДФ, ТПФ)
NH2
NH2
N
H3C
H2 +
C N
АТФ
CH 3
H2
C CH 2OH
N
S
Витамин В1 (тиамин)
АМФ
H3C
Тиаминкиназа
H2 +
C N
N
N
S
CH 3
O
O
H2 H2
C C O P O P OH
O
O
Тиаминдифосфат (ТДФ)

Биологическая роль
ТПФ входит в состав:
пируватдегидрогеназного комплекса
(ПВК→ Ацетил-КоА);
α-кетоглутаратдегидрогеного комплекса
(α-КГ→ Сукцинил-КоА);
транскетолаз ПФШ
(перенос альдегида с кетосахара на альдосахар)

Механизм
ТДФ забирает у субстрата группу и передает ее на липоевую кислоту
NH 2
H2
C N
N
COOH
C O
H3C
N
S
CH 3
O
O
H2 H2
C C O P O P
O
O
OH
S
Тиаминпирофосфат (ТДФ)
CH 3
NH 2
CO2
N
H3C
ПИРУВАТДЕГИДРОГЕНАЗА
H2
C N
N
S
CH 3
O
O
H2 H2
C C O P O P
O
O
Липоевая кислота
SH
HSKoA
C O
CH 3
Липоевая кислота
SKoA
OH
S
S
О
C OH
CH 3
Гидроксиэтил-ТДФ
СН3

Гиповитаминоз В1 (Бери – Бери)

Протекает с преобладанием одной из форм:
1. сухой (нарушения нервной системы). Полиневрит, в
основе - дегенеративные изменения нервов. Вначале
развивается болезненность вдоль нервных стволов, затем
- потеря кожной чувствительности и наступает паралич
(болезнь Бери-Бери). Наблюдается потеря памяти,
галлюцинации.
2. отечной (нарушения сердечно-сосудистой системы),
выражается в нарушении сердечного ритма, увеличении
размеров сердца и в появлении болей в области сердца.
3. кардиальной (острая сердечная недостаточность,
инфаркт миокарда).
К признакам также относят нарушения секреторной и моторной
функций ЖКТ; снижение кислотности желудочного сока, потерю
аппетита, атонию кишечника. Развивается отрицательный азотистый
баланс.

Бери-бери

ВИТАМИН B2 (РИБОФЛАВИН)
O
H3C
H3C
N
NH
O
N
изоаллоксазин
N
H H H
H2C C C C CH 2OH
OH OH OH
рибитол
Витамин В2 (рибофлавин)
Физико-химические свойства. Кристаллы желтого цвета, слаборастворимые
в воде.
Физиологическая суточная потребность у взрослого
человека 2-2,5 мг/сутки.
у новорожденных - 0,4-0,6 мг,
у детей и подростков -0,8-2,мг.

Содержание витамина В2 в пищевых
продуктах мг % (мг/100 г массы)
1.Печень (говяжья) 1,5
2. Яйцо куриное 0,6
3. Пшеница 0,3
4. Молоко 0,2
4. Капуста 0,2
6. Морковь 0,05
Разрушается на свету под действием ультрафиолетовых
лучей. При хранении молока на свету за три с половиной
часа разрушается до 70% витамина.
при нагревании разрушается в щелочной среде,
но в кислой среде, устойчив к действию высокой
температуры (290°С).

Метаболизм
Всасывание: в кишечнике;
Транспорт: в свободном виде;
Активация:
в
слизистой
оболочке
кишечника
происходит
образование
коферментов ФМН и ФАД:
АТФ
АДФ
АТФ
ФФн
Рибофлавин
ФАД
ФМН
Рибофлавинкиназа ФМН-аденилилтрансфераза

Роль в обмене веществ
Коферменты ФАД и ФМН входят в состав аэробных и
анаэробных дегидрогеназ, принимающих участие в
окислительно-восстановительных реакциях (реакции
окислительного фосфорилирования, СДГ, оксидазы АК,
ксантионоксидаза, альдегидоксидаза и т.д.).
O
H3C
H3C
N
Сукцинат Фумарат
H3C
NH
O
N
N
H H H
H2C C C C CH 2OPO 3H2
OH OH OH
ФМН
СДГ
H3C
H
N
O
NH
O
N
N
H
H H H
H2C C C C CH 2OPO 3H
OH OH OH
ФМНН2

ГИПОВИТАМИНОЗ В2

Остановка роста организма
Воспалителение слизистой оболочке ротовой
полости (глоссит - воспаление языка), появляются
длительно незаживающие трещины в углах рта,
дерматит носогубной складки.
Воспаления глаз в виде васкуляризации роговой
оболочки, кератитов, катаракты.
Кожные поражения (дерматиты, облысение,
шелушение кожи, эрозии и т.д.).
общая мышечная слабость и слабость сердечной
мышцы.

ПАНТОТЕНОВАЯ КИСЛОТА (ВИТАМИН B5)
CH 3 OH
HOH 2C
C
CH
CH 3
C
H
N
H2 H2
C C
COOH
O
Витамин В5
белый мелкокристаллический порошок, хорошо растворимый в воде.
Источники. Синтезируется растениями и микроорганизмами,
содержится во многих продуктах животного и растительного
происхождения (яйцо, печень, мясо, рыба, молоко, дрожжи,
картофель, морковь, пшеница, яблоки). В кишечнике человека пантотеновая кислота в небольших количествах продуцируется кишечной
палочкой.

Всасывание: в кишечнике;
Транспорт: в свободном виде;
Активация: из пантотеновой кислоты в клетках
синтезируются коферменты: 4-фосфопантотеин и
НSКоА.
CH 3 OH
H H2 H2
HOH 2C C CH C N C C COOH
CH 3
O
Пантотеновая кислота
АТФ
АДФ
пантотеинкиназа
CH 3 OH
H2
H H2 H2
H2O3PO C C CH C N C C COOH
CH 3
O
4-фосфопантотеин

Роль в обмене веществ
4-фосфопантотеин - кофермент
пальмитоилсинтазы.
НS-КоА
участвует
в: радикалов в реакциях
1. переносе
ацильных
общего пути катаболизма,
2. активации жирных кислот,
3. синтеза холестерина и кетоновых тел,
4. синтеза ацетилглюкозаминов,
5. обезвреживания чужеродных веществ в печени

ГИПОВИТАМИНОЗ В 3

Дерматиты, поражения слизистых,
дистрофические изменения.
Повреждения нервной системы
(невриты, параличи).
Изменения в сердце и почках.
Депигментация волос.
Прекращение роста.
Потеря аппетита и истощение.

ВИТАМИН В6 (ПИРИДОКСИН,
ПИРИДОКСАЛЬ, ПИРИДОКСАМИН)
Распространение: Печень, почки,
мясо, хлеб, горох, фасоль,
картофель.
Всасывание: в кишечнике
Транспорт: в свободном виде;
Активация:
под действием пиридоксалькиназы
превращаются в коферменты
пиридоксальфосфат и
пиридоксаминфосфат.1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Овес 3,3
Пшеница 3,3
Пекарские дрожжи 2,0
Молоко коровье 1,5
Скумбрия 1,03
Печень 0,64
Орехи (фундук) 0,59
Морковь 0,53
Соевые бобы 0,38
Картофель 0,33
Бананы 0,29
Яйцо куриное 0,12

Суточная потребность

взрослого человека - 3 - 4 мг,
новорожденного
- 0,3 - 0,5 мг,
детей и подростков - 0,6 - 1,5 мг.

CHO
HO
H3C
CHO
CH 2OH
АТФ
АДФ
пиридоксалькиназа
N
Пиридоксаль
Витамин В6
HO
H3C
H2
C O PO 3H2
N
Пиридоксальфосфат
Кофермент

Роль в обмене веществ
(обмен аминокислот, перенос аминогрупп)
Пиридоксалевые ферменты играют ключевую
роль в обмене АК:
1. катализируют реакции трансаминирования и
декарбоксилирования аминокислот,
2. участвуют в специфических реакциях
метаболизма отдельных АК: серина,
треонина, триптофана, серосодержащих
аминокислот,
3. в синтезе гема.

В6-кофермент

1.
2.
3.
4.
5.
Изомеразы аминокислот. Утилизация в организме
D-аминокислот
Декарбоксилазы аминокислот. Образование
биогенных аминов
Моноаминооксидазы. Диаминооксидаза
(гистаминаза). Окисление (инактивация) биогенных
аминов
Аминотрансферазы аминокислот. Катаболизм и
синтез аминокислот
Аминотрансферазы йодтирозинов и йодтиронинов.
Биосинтез йодтиронинов (гормонов) в щитовидной
железе и их катаболизм. Аминотрансферазы γаминобутирата. Обезвреживание ГАМК
Фосфорилаза гликогена. Гликогенолиз

Гиповитаминоз В6

Дерматиты, поражения слизистых
Гомоцистинурия
Нарушения обмена триптофана
Судороги

БИОТИН (ВИТАМИН Н)
Содержание в пищевых продуктах
печень акулы свиная и говяжья
печень, почки и сердце быка, яичный
желток, бобы, рисовые отруби,
пшеничная мука цветная капуста.

Роль в обмене веществ
выполняет коферментную функцию в составе карбоксилаз:
образование активной формы СО2:
O
O
CO2 + АТФ
HN
АДФ + Фн
NH
HN
N
H2 H2 H2 H2
C C C C COOH
S
Активация СО2
COOH
H2 H2 H2 H2
C C C C COOH
S

Роль в обмене веществ

1.используется в образовании малонилКоА из ацетил-КоА;
2.в синтезе пуринового кольца;
3.в карбоксилировании ПВК
4.в синтезе жирных кислот, белков и
пуриновых нуклеотидов.

Гиповитаминоз вит. Н

дерматиты
секреции сальных желез
выпадение волос
поражения ногтей
боли в мышцах
усталость
сонливость
депрессия
анемия

Фолиевая кислота

OH
N
N
H2N
N
O
H2
C
H
N
C
H
C
H2
C
H2
C
COOH
COOH
N
2-амино-4-окси-6-метилптерин
H
N
ПАБК
Глутамат
Витамин: фолиевая кислота (фолат, витамин B9, витамин Bc, витамин M)
Бледно-жёлтые гигроскопические кристаллы,
разлагающиеся при 250 °С, малорастворимые
в воде (0,001%).

Норма: 200-400 мкг/сут (беременным 800 мкг/сут)
Синтезируют фолиевую кислоту большинство
микроорганизмов, низшие и высшие растения
Источники фолиевой кислоты
1. пища (много в зелёных овощах с
листьями, в некоторых
цитрусовых, в бобовых, в хлебе
из муки грубого помола,
дрожжах, печени).
2. микрофлора кишечника (плохо).
Свежие лиственные овощи, хранимые при комнатной температуре, могут
терять до 70% фолатов за 3 дня
В процессе приготовления пищи до 95% фолатов разрушается.

Активация, метаболизм и выведение фолиевой кислоты

ЖКТ
Связывание
Фолиевая кислота + фактор Касла
Фолиевая кислота + белки крови
Всасывание: 12 перстная кишка
OH
Печень
O
N
N
H2N
Кровь
5 - 20 мкг/литр
N
H2
C
H
N
C
H
N
H
C
H2
C
H2
C
COOH
COOH
N
2-амино-4-окси-6-метилптерин
2НАДФН2
ПАБК
Глутамат
Фолиевая кислота
Дегидрофолатредуктаза
2НАДФ+
OH
2/3 в печени
N
N
H2N
H
N
N
H
H H
2
C C
CH
O
H
N
H
C
H
N
H
C
H2
C
H2
C
COOH
COOH
Тетрагидрофолиевая кислота (ТГФК)
1% от общего запаса / сут
Моча
1/3 в ткани

Роль ТГФК

Участвует:
в метаболизме аминокислот
(серин
глицин, гомоцистеин
метионин),
в синтез нуклеиновых кислот (пуриновые
основания, тимидиловая кислота),
в образовании эритроцитов
в образовании ряда компонентов нервной
тканифолиевой кислоты
снижает уровень гомоцистеина в крови

1. к ТГФК присоединяются одноуглеродные фрагменты
2. в ТГФК одноуглеродые фрагменты взаимопревращаются
3. одноуглеродные фрагменты ТГФК используются для синтеза:
Н
Метионин
Гомоцистеин
Метионинсинтаза
3
ТМФ
дУМФ
H
Сер
H
R1 N
5
N R2
10
H2
C
Гли
R1 N
5
1
Пурины
НАДН2 НАД+
N R2
10
CH 3
R1 N
5
2
H
N R2
10
N5-метил-ТГФК
N5N10-метилен-ТГФК
ТГФК
+
НАДФ
5,10-метиленТГФК-редуктаза
Сериноксиметилтрансфераза
2
HN
CH
R1 N
5
NH3
H
N R2
10
N5-формимино-ТГФК
2
H
C
R1 N
5
Пурины
НАДФН2
Н2О
N R2
10
N5N10-метеленил-ТГФК
Н+
2
H OHC
R1 N
5
N R2
10
N10-формил-ТГФК

Роль ТГФК в синтезе ДНК
ДНК
Пурины

Гиповитаминоз фолиевой кислоты
Дефицит фолиевой кислоты приводит к:
Мегалобластической анемии
Дефектам нервной трубки у плода.

Развитию гипергомоцистеинемии
1. Гомоцистеин обладает выраженным токсическим
действием на клетку: приводит к повреждению и
активации эндотелиальных клеток (клеток
выстилки кровеносных сосудов), что способствует
развитию тромбозов, атеросклероза.
2. Гипергомоцистеинемия связана с такой
акушерской патологией:
ранние потери беременности,
раннее начало гестоза,
отслойка плаценты,
задержка внутриутробного развития.

К дефициту метионина
Недостаток метионина сопровождается
серьезными нарушениями обмена веществ,
в первую очередь обмена липидов, и
является причиной тяжелых поражений
печени, в частности ее жировой
инфильтрации.

ВИТАМИН В12 (КОБАЛАМИН)
Всасывание: Внутренний Фактор Касла - белок –
гастромукопротеин, синтезируется обкладочными
клетками желудка. В ЖКТ фактор Касла
соединяется с витамином B12 при участии Ca2+,
защищает его от разрушения и обеспечивает
всасывание в тонкой кишке.
Транспорт: В12 поступает в кровь в комплексе с
белками транскобаламинами I и II,
(I) выполняет функцию депо В12, так как
он
наиболее прочно связывается с витамином.
Активация. Из витамина В12 образуются 2
кофермента: метилкобаламин в цитоплазме и
дезоксиаденозилкобаламин в митохондриях.

Суточная потребность

взрослых 2 - 4 мкг,
у новорожденных - 0,3-0,5 мкг,
у детей и подростков - 1,5-3,0 мкг.
Содержание в пищевых продуктах в мкг%
1 Печень свиная 26
2 Почки свиные 15
3 Рыба 2,0
4 Баранина 2
5 Яйцо куриное 1,1
6 Свинина 2
7 Говядина 2
8 Скумбрия 6
9 Сыр 1,1
10 Молоко цельное 0,4

Роль в обмене веществ

кофермент метаболических реакциий
переноса алкильных групп (-СН2-, -СН3);
метилирование гомоцистеина
Метилкобаламин участвует: в образовании
метионина из гомоцистеина и в
превращениях одноуглеродных фрагментов в
составе ТГФК, необходимых для синтеза
нуклеотидов.
Дезоксиаденозилкобаламин участвует: в
метаболизме ЖК с нечётным числом
углеродных атомов и АК с разветвлённой
углеводородной цепью.

Участие витамина В12 в обмене
последовательность превращения витамина В12 в кофермент:
цианкобаламин оксикобаламин дезоксиаденозилкобаламин
1. Обмен Н на группы -СООН, -NH2, -ОН
2. Восстановление рибонуклеотидов в
дезоксирибонуклеотиды
3. Реакции трансметилирования

В12
Фолиевая к-та ------ ТГФК ------
синтез нуклеиновых кислот

Авитаминоз и гиповитаминоз
Эндогенный
Гастрогенный
Экзогенный
Энтерогенный
Проявления: злокачественная макроцитарная,
мегалобластическая анемия;
нарушения ЦНС(фуникулярный
миелоз);
pH желудочного сока
(гастроэнтероколит –
«полированый язык»)
Выбор редакции
Зачастую количество возможных ответов превышает стандартные возможности маятника для биолокации или биолокационных рамок. Тогда на помощь...

Все мы знаем о парне, который устроился смотрителем/исследователем/блоггером на один из райских уголков Земли - этот человек является...

Если у вас возникла срочная необходимость внести платеж по кредиту, полученному в ОТП-банке, а вы не знаете, как это сделать, тогда этот...

Некоторые кошмары и вовсе леденят душу, а после утреннего пробуждения еще длительное время оставляют неприятный осадок на сердце....
Фарш пригодится для приготовления блинчиков, макарон по-флотски, фаршированного перца и других блюд. Но сначала его нужно пожарить, чтобы...
Время чтения: 2 мин. Каждый пользователь мобильной связи стремится снизить свои расходы на нее и периодически меняет тарифы на более...
Можно выделить несколько основных компонентов мировоззрения Нового времени. Теряется ощущение того, что есть подлинное существование...
Выбор подарков для друзей (сколько бы им лет не исполнялось) всегда требует ответственного подхода, но в возрасте от 15 до 25 лет каждый...
О том, как пить кровь в «Скайриме», задумываются многие игроки. Ведь при наличии соответствующей фракции (вампиры) должна быть и...
Новое