Параметры люминесценции и основные законы люминесценции. Люминесценция основные понятия упоминание о люминесценции датируется Интенсивность люминесценции формула


Понятие “люминесценция” включает в себя множество различных явлений. Существует несколько систем их классификации.

В аналитической химии чаще всего используется молекулярная фотолюминесценция. В зависи­мости от природы основного и возбуждённого состояния молекулы её подразделяют на флуо­ресценцию и фосфоресценцию.

Основные характеристики и закономерности люминесценции

Основными характеристиками люминесценции являются:

· спектр возбуждения ,

· спектр испускания (спектр люминесценции),

· квантовый и энергетический выходы ,

· поляризация , время жизни и т.д.

Спектр возбуждения люминесценции (флуоресценции, фосфоресценции) - зависимость интенсивности испускаемого света с фиксированной длиной волны от длины волны или другой волновой характеристики возбуждающего света .

Возбуждая молекулу вещества светом с длиной волны, соответствующей l max спектра возбуждения, можно получить флуоресценцию с максимальной интенсивностью. В разбавленных растворах спектр возбуждения флуоресценции совпадает со спектром поглощения вещества.

Спектр люминесценции - зависимость интенсивности испускаемого света от его длины волны при фиксированной длине волны возбуждающего света .

В табл. 21.1 приведены основные свойства, присущие спектрам люминесценции.

Основные свойства спектров люминесценции

Свойство Объяснение
Спектр люминесценции не зависит от длины волны возбуждающего света (правило М.Каши) Независимо от того, в какое возбуждённое состояние перешла молекула при поглощении фотона, испускание всегда происходит при переходе между первым возбуждённым и основным энергетическими уровнями
Как правило, спектр люминесценции в целом и его максимум всегда сдвинуты по сравнению со спектром поглощения и его максимумом в сторону больших длин волн (меньших энергий) - правило Стокса-Ломмеля Часть поглощённой энергии теряется за счёт колебательной релаксации при столкновении с другими молекулами, кроме того, растворитель стабилизирует возбуждённое состояние и уменьшает его энергию
Для многих веществ нормированные спектры поглощения (только самая длинноволновая полоса) и флуоресценции, изображённые в функции частот или волновых чисел, симметричны относительно прямой, проходящей перпендикулярной оси абсцисс через точку пересечения этих спектров (правило В.Л. Лёвшина) Поглощение (самая длинноволновая полоса) и испускание вызваны одними и теми же переходами (S 0 › S 1 для флуоресценции)

Квантовый выход (обозначение В кв, Q, f) - отношение числа испускаемых фотонов к числу поглощаемых

Энергетический выход (В эн) - отношение энергии излучаемого света к энергии поглощаемого

Между В кв и В эн существует следующая взаимосвязь

Поскольку обычно n исп < n погл, то В эн < В кв

Квантовый выход люминесценции не зависит от l возб вплоть до некоторой l, находящейся в области наложения спектров поглощения и испускания, после чего резко уменьшается.Энергетический выход зависит от l возб: вначале он увеличивается прямо пропорционально l возб, затем на некотором интервале не изменяет своей величины, после чего резко уменьшается (закон Вавилова ).

Влияние различных факторов на интенсивность флуоресценции растворов

Люминесценция и, в частности, флуоресценция в гораздо большей степени подвержена влиянию различных факторов, чем поглощение света. Интенсивность флуоресценции зависит от:

· природы вещества ;

· концентрации вещества в растворе ;

· условий, в которых находится флуоресцирующее вещество (температура, растворитель, рН, наличие в растворе других веществ, способных влиять на флуоресценцию).

Природа вещества

Неорганические соединения (за исключением некоторых соединений урана, лантанидов) обычно не способны флуоресцировать в растворе. В то же время среди органических соединений флуоресцирующих веществ достаточно много.

Необходимым (но не достаточным!) условием для фотолюминесценции является способность вещества поглощать электромагнитное излучение УФ- или видимого диапазона . Обычно вещества, обладающие интенсивной флуоресценцией, имеют длинную систему сопряжённых связей. Наиболее часто флуоресцирующие вещества встречаются среди ароматических соединений. Введение в бензольное кольцо электронодонорных заместителей увеличивает способность вещества флуоресцировать . Например, многие фенолы и ароматические амины обладают интенсивной флуоресценцией. Введение электроноакцепторных заместителей , за некоторым исключением, уменьшает флуоресценцию . Атомы тяжёлых галогенов (Br, I) увеличивают скорость интеркомбинационной конверсии и, тем самым, уменьшают квантовый выход флуоресценции . Однако введение тяжёлых галогенов увеличивает способность вещества фосфоресцировать. Способность вещества к флуоресценции в растворе увеличивается при конденсации ароматических колец и увеличении «жёсткости» молекулы . Например

Концентрация вещества

Зависимость между интенсивностью флуоресценции и концентрацией флуоресцирующего вещества в растворе более сложная, чем между поглощением света и концентрацией. Это связано с тем, что процесс излучения является вторичным и зависит от предшествующего ему процесса поглощения света.

Рассмотрим простейший случай, когда в растворе находится только одно флуоресцирующее вещество.

Таким образом:

Следовательно, зависимость между интенсивностью флуоресценции и концентрацией флуоресцирующего вещества не является линейной.

Функцию можно разложить в ряд Маклорена

Если произведение (оптическая плотность раствора) невелико, то и тогда

Таким образом, при малых значениях оптической плотности (при l возб) зависимость интенсивности флуоресценции от концентрации можно считать линейной , что и используется в количественном анализе. При более высоких значениях A зависимость интенсивности флуоресценции от концентрации становится более сложной и отклоняется от линейной. При A = 0,01 отклонение от линейности составляет 1%, 0,05 - 5%; 0,5 - около 35% (рис. 21.4).

Рис. 21.4. Зависимость между интенсивностью флуоресценции и оптической плотностью раствора

1) рассчитанная по упрощённой формуле I = KC; 2) реальная

Влияние оптической плотности раствора на интенсивность флуоресценции называется «эффектом внутреннего фильтра ». Этот эффект обусловлен двумя причинами:

· поглощением возбуждающего света , вследствие чего частицы, находящиеся дальше от источника излучения, будут получать меньше возбуждающего излучения;

· поглощением одними частицами вещества излучения , испускаемого другими частицами этого же вещества.

Введение

флуоресценции люминисценция краситель поляризация

Время жизни электронно-возбужденного состояния молекул 10 -8 -10 -9 с. После этого молекула возвращается в исходное состояние, израсходовав дополнительную энергию безизлучательным образом на колебательные движения ядер и поступательные движения соседних молекул, т.е. растратив ее в виде тепла. Но эта энергия также может выделиться в виде излученного фотона. Это явление называют люминесценцией. В зависимости от способа возбуждения молекулы - светом, электрической энергией, химическими реакциями, нагреванием, и т.д. - различают фото-, электро-, хемо-, или термолюминесценцию. Нас больше интересует фотолюминесценция, обычно называемая флуоресценцией.

Законы флуоресценции

Спектром флуоресценции называют зависимость интенсивности излученного света от энергии фотонов: I фл = f (h) или F(). Но обычно в видимой и ультрафиолетовой области строят зависимость интенсивности флуоресцентного света от длины волны:

флуоресценция люминисценция краситель поляризация

I фл = f().

По закону Стокса , спектр флуоресценции смещен в длинноволновую область по сравнению со спектром поглощения . Это смещение называется стоксовским сдвигом. Оно отражает потерю части энергии возбуждения вследствие теплового рассеяния. Но нередко спектры флуоресценции частично перекрываются со спектрами поглощения света (и со спектрами возбуждения флуоресценции). В области перекрытия, называемой антистоксовской (Рис. 1), энергия излученных фотонов больше энергии поглощенных квантов. Дополнительная энергия в данном случае берется за счет колебательной энергии молекул, когда в результате излучения происходит переход на более низкий колебательный подуровень, чем тот, с которого происходило поглощение фотона (Рис. 2).

Рис. 1.

Правило Каша гласит, что в растворах излучательные переходы происходят, как правило, с нижних колебательных подуровней синглетных или триплетных возбужденных уровней. Это происходит потому, что за время жизни возбужденного состояния 10 -8 -10 -9 с успевают осуществиться все колебательно-вращательные переходы (их типичная длительность 10 -13 -10 -12 с). Можно сказать, что к моменту испускания фотона молекула «забывает», на какой подуровень она была возбуждена. Поэтому спектр флуоресценции не зависит от длины волны возбуждающего света .

Рис. 2. Схемы переходов между электронно-колебательными при стоксовой (а) и антистоксовой (б) флуоресценции, когда в результате перехода на более низкий колебательный подуровень энергия излученного кванта выше энергии поглощенного кванта

По правилу Лёвшина , спектры флуоресценции, построенные в шкале частот (энергий фотонов, зеркально-симметричны относительно длинноволновой полосе поглощения. Это связано с тем, что расстояния между колебательными подуровнями и вероятности переходов на них у молекул в возбужденном состоянии сходны с таковыми в основном состоянии. Причина этого в том, что за время электронных переходов порядка 10 -15 с положения ядер не успевают измениться, так как типичные периоды их колебаний на два-три порядка дольше - порядка 10 -13 -10 -12 с. Поэтому по принципу Франка-Кондона поглощение и испускание фотонов обусловлено одними и теми же колебательными подуровнями.

Квантовым выходом флуоресценции называется отношение числа излученных квантов к числу поглощенных:

= n фл /n погл

Величина 0 < < 1, потому что кроме испускания фотонов, есть и другие пути утилизации энергии возбуждения: она может быть передана другим молекулам, расходоваться в химических реакциях или рассеваться в виде тепла.

В соответствии с законом Вавилова , в стоксовой области квантовый выход флуоресценции сложных молекул в растворах не зависит от длины волны возбуждающего света.

Интенсивность флуоресценции разбавленных растворов пропорциональна концентрации флуорохромов. Действительно, в разбавленных растворах с низкой оптической плотностью D = cl < 0,05

I фл = K I погл = K I 0 (1-Т) = K I 0 (1 -10 -D ) 2,3 k I 0 D,

где k - доля флуоресцентного излучения, попадающего в фотоприемник. Это позволяет по флуоресценции определять количество флуорохрома и его изменения при различных воздействиях. Для количественного измерения концентрации флуорохрома используют калибровочную кривую:

c = c станд (I фл /I станд ),

где индекс «станд» относится к стандартному калибровочному раствору.

Флуоресценция - это физический внутримолекулярный процесс, в результате которого молекула за время, составляющее 10~8-10~9 с, переходит в основное состояние с испусканием кванта света. Принцип Франка - Кондона. Часть электронной энергии при поглощении и испускании света должна расходоваться на увеличение колебаний структуры, превращаться в тепло. Явление наблюдается в результате резкого изменения градиента электронной энергии около ядер при возбуждении и релаксации. (закон Стокса). Спектр флуоресценции относительно спектра поглощения сдвинут в более длинноволновую сторону. Данное правило принято объяснять потерей некоторой части поглощённой энергии на тепловое движение молекул. Так как в зависимости от подведенной энергии частица может перейти в энергетически разные возбужденные состояния, можно было ожидать прямой зависимости спектров люминесценции от спектра возбуждения источника. Правило Стокса используется в осветительной технике для преобразования ультрафиолетового излучения в видимый свет. Примером является ртутная лампа, в которой пары ртути, возбуждаемые электрическим разрядом, излучают ультрафиолет. На внутреннюю поверхность лампы нанесен слой люминофора с подходящим спектром люминесценции в видимой области. По сравнению с лампами накаливания такие лампы более экономичны. Правило Каши. Спектры флуоресценции не зависят от длины волны возбуждающего света. С точки зрения энергетических уровней, верхние возбужденные состояния, как правило, расположены более близко друг к другу, чем наинизшее возбужденное состояние (синглетное или триплетное) и основное состояние. В результате этого малого расстояния скорости безызлучательного перехода между верхними возбужденными состояниями значительно превышают скорость люминесценции с этих состояний, таким образом, люминесценция с верхних уровней не происходит. Только в нижнем возбужденном состоянии скорость излучательной релаксации становится сравнима со скоростью безызлучательной релаксации, в результате чего только низшее возбужденное состояние способно к люминесценции. Правило зеркальной симметрии (Левшина) выражает тот факт, что спектры поглощения и флуоресценции, построенные в шкале частот, приближенно симметричны относительно прямой, проходящей через точку их пересечения. В основе этого правила лежит часто наблюдающаяся на практике близость структуры и взаимного расположения колебательных подуровней основного и первого возбужденного электронных состояний молекул, а также практически одинаковый характер относительного изменения вероятностей переходов в пределах полос поглощения и флуоресценции. Закон Вавилова. Устанавливает зависимость выхода фотолюминесценции от длины волны возбуждающего света. Квантовый выход люминесценции - квантовый выход - отношение числа излученных квантов к числу поглощенных. Метод спектрофлуориметрии характеризуется исключительно высокой чувствительностью и специфичностью и и даёт универсальные возможности для изучения возбужденных состояний молекул, фотохимических реакций, динамики быстрых молекулярных процессов, структуры и свойств сложных химических и биологических объектов. С помощью данного метода можно изучать свойства флуоресцирующих веществ при концентрациях, гораздо ниже тех, которые требуются для измерения спектров поглощения. Измерение спектров флуоресценции проводят с помощью прибора, называемого спектрофлуориметром. Принцип работы спектрофлуориметра основан на выделении узких участков спектра как возбуждающего, так и испускаемого света и на выборе длин волн возбуждения и испускания с помощью монохроматоров при автоматизированном управлении работой прибора, регистрации и обработке результатов флуоресцентных измерений.


75. Фотобиологические процессы: классификация.

Фотобиологические процессы - процессы, которые начинаются с поглощения квантов света биологически функциональными молекулами и заканчиваются соответствующей физиологической реакцией в организме или тканях. К фотобиологическим процессам относятся: фотосинтез - синтез органических молекул за счет энергии солнечного света; фототаксис - движение организмов (например, бактерий) к свету или от света; фототропизм - поворот листьев (стеблей) растений к свету или от него; фотопериодизм - регуляция суточных и годовых циклов животных путем циклических воздействий «свет - темнота»; зрение - восприятие света глазом, сопровождающееся превращением световой энергии в энергию нервного импульса; помутнение хрусталика; изменения состояния кожи под воздействием света: эритема, эдема, загар, пигментация, ожог, рак кожи.


76. Фотодиструктивные процессы, их общая характеристика. Фотосенсибилизация, её виды и механизм.

К фотодеструктивным процессам относятся инициируемые светом в молекулах биосубстрата реакции, приводящие к образованию таких химических изменений молекулы, которые сопровождаются нарушением или даже полной потерей их функциональных свойств и в конечном счёте обуславливают проявление повреждающих эффектов на клеточном и организменном уровнях. Фотодеструктивные реакции наиболее эффективно индуцируются в биологических системах коротковолновым ультрафиолетовым (УФ) излучением (< 290 нм), что связано с прямым поглощением этого излучения нуклеиновыми кислотами, белками и некоторыми другими биологически важными внутриклеточными компо-нентами.При определенных условиях фотодеструктивные процессы могут протекать и под действием света более длинноволнового диапазона оптического спектра, который подразделяется на три области: средневолновую УФ (290320 нм), длинноволновую УФ (320-400 нм) и видимую (400-700 нм). Длинноволновое УФ-излучение и видимый свет практически не поглощаются нуклеиновыми кислотами и белками. Поэтому инициация в них деструктивных реакций при действии этих видов оптического излучения осуществляется преимущественно с участием других молекул, выступающих в качестве первичных фо-торецепторов. Такие вещества называются фотосенсибилизаторами, а процессы, в которых они участвуют, - фотосенсибилизированными. Известно несколько типов первичных фотохимических превращений молекул, ответственных за деструктивное действие оптического излучения. К ним относятся реакции фотоокисления, фотоионизации, фотодиссоциации и фотоприсоединения. Основной первичной фотореакцией при УФ-фотолизе остатков триптофана (АН) в белках является его фотоионизация с образованием катион- радикала (АН+) и сольватированного электрона (е-s): АН AH+ + е-s. В цистиновых остатках белков первичная фотохимическая реакция заключается в фотодиссоциации S -S-связей: т. е. фотолиз цистина идет через стадию свободных радикалов с локализацией неспаренного электрона на атоме серы. При относительно низких интенсивностях УФ-света основными фотохимическими реакциями, в которые вступают основания нуклеиновых кислот, являются реакции фотоприсоединения - димеризация, гидратация и образование (6-4) пиримидиновых аддуктов. Фотосенсибилизированные деструктивные реакции в большинстве случаев протекают с участием кислорода.


Эти процессы, получившие название фотодинамических, по своему механизму разделяют на два типа в зависимости от того, каким способом энергия светового возбуждения передается от сенсибилизатора к биологическому субстрату. В реакциях типа I фотовозбужденный сенсибилизатор может вступать в оки-слительно-восстановительные реакции с различными биологически важными моле-кулами, участвуя в переносе электрона либо атома водорода. В результате образуются реакционноспособные радикалы (и/или ион-радикалы) сенсибилизатора и молекул биологического субстрата, вступающие в дальнейшие химические реакции с кислородом. В фотодинамических реакциях типа II происходит перенос энергии от возбу-жденной в триплетное состояние молекулы сенсибилизатора к кислороду с образованием его электронно-возбужденной формы 1О2; образовавшийся синглетный кислород затем окисляет молекулы биологического субстрата. С меньшей эффективностью некоторые триплетные сенсибилизаторы способны осуществлять одноэлектронное восстановление молекулярного кислорода с образованием супероксидного анион-радикала 0-2 Наряду с фотодинамическими деструктивными процессами известны механизмы фотосенсибилизации, не требующие участия кислорода. Такие фотосенсибилизированные реакции, протекающие, в частности, в ДНК, реализуются с участием молекул-сенсибилизаторов, которые либо передают энергию возбуждения на азотистые основания, обеспечивая тем самым их последующую димеризацию, либо в возбужденном состоянии реагируют с мононуклеотидами, образуя аддукты. К пер-вой группе фотосенсибилизаторов относятся некоторые кетоны; вторую группу составляют производные фурокумаринов (псоралены). При фотосенсибилизации с помощью псораленов в ДНК образуются два типа фотопродуктов: (1) моноаддукты (молекула псоралена ковалентно связана с одним пиримидином) и (2) диаддукты, или межнитевые ковалентные сшивки (молекула псоралена ковалентно связана с двумя пиримидинами).

Люминесценция - это излучение света определенными материалами в относительно холодном состоянии. Она отличается от излучения раскаленных тел, например или угля, расплавленного железа и проволоки, нагреваемой электрическим током. Излучение люминесценции наблюдается:

  • в неоновых и люминесцентных лампах, телевизорах, радарах и экранах флюороскопов;
  • в органических веществах, таких как люминол или люциферин в светлячках;
  • в некоторых пигментах, используемых в наружной рекламе;
  • при молнии и северном сиянии.

Во всех этих явлениях световое излучение не является результатом нагревания материала выше комнатной температуры, поэтому его называют холодным светом. Практическая ценность люминесцентных материалов заключается в их способности трансформировать невидимые формы энергии в

Источники и процесс

Явление люминесценции происходит в результате поглощения материалом энергии, например, от источника ультрафиолетового или рентгеновского излучения, пучков электронов, химических реакций и т. д. Это приводит атомы вещества в возбужденное состояние. Так как оно неустойчиво, материал возвращается в свое исходное состояние, а поглощенная энергия выделяется в виде света и/или тепла. В процессе задействованы только внешние электроны. Эффективность люминесценции зависит от степени превращения энергии возбуждения в свет. Число материалов, обладающих достаточной для практического применения эффективностью, относительно небольшое.

Люминесценция и накаливание

Возбуждение люминесценции не связано с возбуждением атомов. Когда горячие материалы начинают светиться в результате накаливания, их атомы находятся в возбужденном состоянии. Хотя они вибрируют уже при комнатной температуре, этого достаточно, чтобы излучение происходило в дальней инфракрасной области спектра. С повышением температуры частота электромагнитного излучения смещается в видимую область. С другой стороны, при очень высоких температурах, которые создаются, например, в ударных трубах, столкновения атомов могут быть настолько сильными, что электроны отделяются от них и рекомбинируют, испуская свет. В этом случае люминесценция и накаливание становятся неразличимыми.

Люминесцентные пигменты и красители

Обычные пигменты и красители обладают цветом, так как они отражают ту часть спектра, которая комплементарна поглощенной. Небольшая часть энергии преобразуется в тепло, но заметного излучения не происходит. Если, однако, люминесцентный пигмент поглощает дневной свет на определенном участке спектра, он может излучать фотоны, отличающиеся от отраженных. Это происходит в результате процессов внутри молекулы красителя или пигмента, благодаря которым ультрафиолет может быть преобразован в видимый, например, синий свет. Такие методы люминесценции используются в наружной рекламе и в стиральных порошках. В последнем случае «осветлитель» остается в ткани не только для отражения белого, но и для преобразования ультрафиолетового излучения в синий цвет, компенсирующий желтизну и усиливающий белизну.

Ранние исследования

Хотя молнии, северное сияние и тусклое свечение светлячков и грибов всегда были известны человечеству, первые исследования люминесценции начались с синтетического материала, когда Винченцо Каскариоло, алхимик и сапожник из Болоньи (Италия), в 1603 г. нагрел смесь сульфата бария (в виде барита, тяжелого шпата) с углем. Порошок, полученный после охлаждения, ночью испускал голубоватое свечение, и Каскариоло заметил, что оно может быть восстановлено путем воздействия на порошок солнечного света. Вещество было названо «ляпис солярис», или солнечный камень, потому что алхимики надеялись, что оно способно превращать металлы в золото, символом которого является солнце. Послесвечение вызвало интерес многих ученых того периода, дававших материалу и другие названия, в том числе «фосфор», что означает «носитель света».

Сегодня название «фосфор» используется только для химического элемента, в то время как микрокристаллические люминесцирующие материалы называются люминофором. «Фосфор» Каскариоло, по-видимому, был сульфидом бария. Первым коммерчески доступным люминофором (1870 г.) стала «краска Бальмена» - раствор сульфида кальция. В 1866 году был описан первый стабильный люминофор из сульфида цинка - один из важнейших в современной технике.

Одно из первых научных исследований люминесценции, проявляющейся при гниении древесины или плоти и в светлячках, было выполнено в 1672 году английским ученым Робертом Бойлем, который, хотя и не знал о биохимическом происхождении этого света, тем не менее установил некоторые из основных свойств биолюминесцентных систем:

  • свечение холодное;
  • оно может быть подавлено такими химическими агентами, как спирт, соляная кислота и аммиак;
  • излучение требует доступа к воздуху.

В 1885-1887 годах было замечено, что неочищенные экстракты, полученные из вест-индийских светлячков (огненосных щелкунов) и из моллюсков фолад, при смешивании производят свет.

Первыми эффективными хемилюминесцентными материалами были небиологические синтетические соединения, такие как люминола, открытая в 1928 году.

Хеми- и биолюминесценция

Большая часть энергии, выделяющейся в химических реакциях, особенно реакциях окисления, имеет форму тепла. В некоторых реакциях, однако, ее часть используется для возбуждения электронов до более высоких уровней, а во флуоресцентных молекулах до возникновения хемилюминесценции (ХЛ). Исследования показывают, что ХЛ является универсальным явлением, хотя интенсивность люминесценции бывает настолько мала, что требуется использование чувствительных детекторов. Есть, однако, некоторые соединения, которые демонстрируют яркую ХЛ. Наиболее известным из них является люминол, который при окислении пероксидом водорода может давать сильный синий или сине-зеленый свет. Другие сильные ХЛ-вещества - люцигенин и лофин. Несмотря на яркость их ХЛ, не все они эффективны при преобразовании химической энергии в световую, т. к. менее 1 % молекул излучают свет. В 1960-е годы было обнаружено, что сложные эфиры щавелевой кислоты, окисленные в безводных растворителях в присутствии сильно флуоресцирующих ароматических соединений, излучают яркий свет с эффективностью до 23 %.

Биолюминесценция представляет собой особый тип ХЛ, катализируемой ферментами. Выход люминесценции таких реакций может достигать 100 %, что означает, что каждая молекула реагирующего люциферина переходит в излучающее состояние. Все известные сегодня биолюминесцентные реакции катализируются реакциями окисления, протекающими в присутствии воздуха.

Термостимулированная люминесценция

Термолюминесценция означает не температурное излучение, но усиление светового излучения материалов, электроны которых возбуждены под действием тепла. Термостимулированная люминесценция наблюдается у некоторых минералов и прежде всего у кристаллофосфоров после того, как они были возбуждены светом.

Фотолюминесценция

Фотолюминесценция, которая возникает под действием электромагнитного излучения, падающего на вещество, может производиться в диапазоне от видимого света через ультрафиолетовый до рентгеновского и гамма-излучения. В люминесценции, вызванной фотонами, длина волны излучаемого света, как правило, равна или больше длины волны возбуждающего (т. е. равной или меньшей энергии). Эта разница в длине волны обусловлена ​​преобразованием поступающей энергии в колебания атомов или ионов. Иногда, при интенсивном воздействии лучом лазера, испускаемый свет может иметь более короткую длину волны.

Тот факт, что ФЛ может возбуждаться под действием ультрафиолетового излучения, был обнаружен немецким физиком Иоганном Риттером в 1801 г. Он заметил, что люминофоры ярко светятся в невидимой области за фиолетовой частью спектра, и таким образом открыл УФ-излучение. Превращение УФ в видимый свет имеет большое практическое значение.

При высоком давлении частота увеличивается. Спектры больше не состоят из одной спектральной линии 254 нм, а энергия излучения распределена по спектральным линиям, соответствующим различным электронным уровням: 303, 313, 334, 366, 405, 436, 546 и 578 нм. Ртутные лампы высокого давления используют для освещения, так как 405-546 нм соответствуют видимому голубовато-зеленому свету, а при трансформации части излучения в красный свет с помощью люминофора в итоге получается белый.

Когда молекулы газа возбуждаются, их спектры люминесценции показывают широкие полосы; не только электроны поднимаются на уровни более высокой энергии, но одновременно возбуждаются колебательные и вращательные движения атомов в целом. Это происходит потому, что колебательные и вращательные энергии молекул составляют 10 -2 и 10 -4 от энергий переходов, которые, складываясь, образуют множество немного отличающихся длин волн, составляющих одну полосу. В более крупных молекулах есть несколько перекрывающих друг друга полос, по одной для каждого вида перехода. Излучение молекул в растворе преимущественно лентовидное, что вызвано взаимодействием относительно большого числа возбужденных молекул с молекулами растворителя. В молекулах, как и в атомах, в люминесценции участвуют внешние электроны молекулярных орбиталей.

Флуоресценция и фосфоресценция

Эти термины можно различать не только на основании длительности свечения, но и по способу его производства. Когда электрон возбуждается до синглетного состояния со сроком пребывания в нем 10 -8 с, из которого он может легко вернуться в основное, вещество излучает свою энергию в виде флуоресценции. Во время перехода спин не изменяется. Базовое и возбужденное состояния имеют подобную кратность.

Электрон, однако, можно поднять на более высокий энергетический уровень (называемый "возбужденное триплетное состояние") с обращением его спина. В квантовой механике переходы из триплетных состояний в синглетные запрещены, и, следовательно, время их жизни значительно больше. Поэтому люминесценция в этом случае имеет гораздо более длительный срок: наблюдается фосфоресценция.

Свечение вещества (т. е. испускание видимого света), обусловленное переходами атомов и молекул вещества с высших энергетических уровней на низшие, называется люминесценцией, или холодным

свечением. Люминесценции должно предшествовать возбуждение атомов и молекул вещества. После устранения возбудителя люминесценция продолжается в течение некоторого промежутка времени, зависящего от природы люминесцирующего вещества и изменяющегося в широких пределах: от миллиардных долей секунды до многих часов и даже суток. По продолжительности «послесвечения» люминесценция подразделяется на флуоресценцию (кратковременное «послесвечение») и фосфоресценцию (длительное «послесвечение»). Впрочем, это подразделение весьма условно.

Свечение, обусловленное тепловым движением атомов и молекул (т. е. тепловое излучение), не относится к люминесценции. К ней не относятся также отражение и рассеяние света и некоторые другие виды свечения тела, прекращающиеся одновременно с устранением причины, вызвавшей их.

Чтобы отличить люминесценцию от этих видов свечения, ей можно дать следующее определение: люминесценция есть свечение вещества, являющееся избытком над тепловым излучением этого вещества при данной температуре и имеющее конечную длительность (т. е. не прекращающееся одновременно с устранением вызвавшей его причины).

Вещества, обладающие ярко выраженной способностью люминесцировать, называются люминофорами.

В зависимости от способа возбуждения люминесценции различают несколько ее видов.

1. Фотолюминесценция возбуждается видимым и ультрафиолетовым излучением. Примером фотолюминесценции может служить свечение часового циферблата и стрелок, окрашенных соответствующим люминофором.

2. Рентгенолюминесценция возбуждается рентгеновскими лучами; ее можно наблюдать, например, на экране рентгеновского аппарата.

3. Радиолюминесценция возбуждается радиоактивным излучением (см. § 139); наблюдается, например, на экране сцинтилляционных счетчиков (см. § 140).

4. Катодолюминесценция возбуждается электронным лучом; наблюдается на экранах осциллографа, телевизора, радиолокатора и других электроннолучевых приборов. В качестве люминофора, покрывающего экран, используются главным образом сульфиды и селениды цинка и кадмия.

5. Электролюминесценция возбуждается электрическим полем; имеет место, например, в газоразрядных трубках.

6. Хемилюминесценция возбуждается химическими процессами в веществе. Таковы, например, свечение белого фосфора, гниющей древесины, а также свечения некоторых споровых растений, насекомых, морских животных и бактерий.

Таким образом, люминесценция является своеобразным генератором (квантовым генератором), непосредственно преобразующим энергию электромагнитных волн различной длины, а также механическую, электрическую и химическую энергию в энергию видимого света.

Степень преобразования поглощаемой энергии в энергию люминесценции характеризуется энергетическим выходом люминесценции:

Спектр люминесценции зависит от природы люминесцирующего вещества и вида люминесценции.

Из всех перечисленных видов люминесценции рассмотрим подробнее только фотолюминесценцию, имеющую большое практическое применение.

Экспериментальное изучение спектров фотолюминесценции показало, что они, как правило, отличаются от спектров возбуждающего излучения.

Спектр люминесценции и его максимум сдвинуты в сторону более длинных волн относительно спектра, использованного для возбуждения.

Эту закономерность, называемую правилом Стокса, легко объяснить на основе квантовой теории. Энергия поглощаемого кванта частично переходит в другие виды энергии, например в теплоту. Поэтому энергия кванта люминесценции должна быть меньше Следовательно, где длины волн, соответствующие излученному и поглощенному квантам.

Иногда может иметь место так называемая антистоксовская люминесценция, при которой Это бывает в случае, когда квант поглощался уже возбужденной молекулой. Тогда в квант люминесценции входит не только часть энергии поглощенного кванта, но и энергия возбуждения молекулы. Понятно, что в этом случае

Существенной особенностью жидких и твердых люминофоров является независимость их спектра люминесценции от длины волны возбуждающего света. Благодаря этому по спектру фотолюминесценции можно судить о природе вещества жидких и твердых люминофоров.

Энергетический выход люминесценции может при некоторых условиях быть очень большим, достигающим 0,8; у жидких и твердых тел он зависит от длины волны возбуждающего света. Согласно закону Вавилова,

энергетический выход люминесценции сначала растет пропорционально длине волны возбуждающего света а затем (достигнув максимума) резко падает до нуля.

На рис. 365 приведен график зависимости от полученный Вавиловым для раствора флуоресцеина.

Как и правило Стокса, закон Вавилова объясняется квантовыми свойствами света. Действительно, представим себе наиболее благоприятный случай, когда каждый квант возбуждающего света приводит к образованию кванта люминесценции Тогда

энергетический выход люминесценции, очевидно, равен отношению этих квантов:

Но X не зависит от (у жидких и твердых люминофоров). Следовательно, в последней формуле при изменении будет изменяться только т. е. энергетический выход будет пропорционален Срыв кривой энергетического выхода происходит при больших длинах волн которым соответствуют слишком малые кванты уже не способные возбуждать люминесценцию.

Люминесценция находит широкое применение в осветительной технике: на ней, например, основана люминесцентная лампа. Люминесцентная лампа состоит из стеклянной трубки, у которой внутренняя поверхность стенок покрыта тонким слоем люминофора (рис. 366). В торцы трубки впаяны электроды. Трубка наполнена парами ртути и аргоном; парциальное давление паров ртути составляет около 1 Па, парциальное давление аргона - 400 Па.

Люминесцентная лампа включается в электросеть последовательно с дросселем и стартером (служащим для предварительного разогрева электродов).

Возникающий в лампе газовый разряд вызывает электролюминесценцию паров ртути. В спектре этой люминесценции наряду с видимым светом имеется ультрафиолетовое излучение (длиной волны оно возбуждает фотолюминесценцию люминофора, нанесенного на стенки лампы. Таким образом, в люминесцентной лампе совершается двойное преобразование энергии: электрическая энергия превращается в энергию ультрафиолетового излучения паров ртути, которая в свою очередь превращается в энергию видимого излучения люминофора.

Изменяя состав люминофора, можно изготовлять лампы требуемым спектром фотолюминесценции. Таким путем изготовляются люминесцентные лампы белого света, тепло-белого света, холодно-белого сгета и дневного света.

Спектральный состав излучения ламп дневного света близок к рассеянному евету северной части небосвода; лампа холодно-белого света имеет спектр, подобный спектру прямой солнечной радиации.

В связи с этим люминесцентные лампы успешно применяются для «досвечивания» сельскохозяйственных культур, выращиваемых на защищенном грунте.

Распределение энергии в спектре излучения лампы дневного света показано на рис. 367.

Люминесцентные лампы экономичны (их световой коэффициент полезного действия в 10-20 раз больше, чем у ламп накаливания) и весьма долговечны (срок службы доходит до 10 000 часов).

Другим важным применением люминесценции является люминесцентный анализ - метод определения состава вещества по спектру его фотолюминесценции, возбуждаемой ультрафиолетовыми лучами. Будучи очень чувствительным, люминесцентный анализ позволяет обнаружить малейшие изменения в химическом составе вещества и тем самым выявлять различие между объектами, кажущимися совершенно одинаковыми. Этим методом можно, например, выявлять самые начальные стадии загнивания пищевых продуктов (люминесцентный контроль свежести продуктов), обнаруживать следы нефти в пробах почвы, извлеченных из буровых скважин (люминесцентная разведка нефти), и т. п.

С помощью фотолюминесценции можно обнаружить тончайшие трещины на поверхности деталей машин и других изделий (люминесцентная дефектоскопия). Для этого поверхность исследуемого изделия смазывают жидким люминофором. Через 15-20 мин поверхность обмывают и вытирают. Однако в трещинах поверхности люминофор остается. Свечение этого люминофора (при ультрафиолетовом облучении изделия) отчетливо обрисует конфигурацию трещин.

Укажем, наконец, на использование фотолюминесценции для маскировочного освещения и декоративных целей (применение флуоресцирующих и фосфоресцирующих красок).

При фотолюминесценции атомы люминесцирующего вещества излучают совершенно несогласованно (беспорядочно): их излучения разновременны, имеют различные частоты и разности фаз, распространяются по всевозможным направлениям. Поэтому яркость фотолюминесценции оказывается незначительной. Однако в последние годы удалось найти способ искусственно вызывать когерентное одинаково направленное излучение множества атомов, создающее узкий пучок монохроматического света, превосходящего по яркости обычную люминесценцию в миллионы раз. Прибор, в котором осуществляется такое излучение, назван оптическим квантовым генератором, или лазером.

Название «лазер» образовано из первых букв английских слов: Light Amplification by Stimylated Emission of Radiation (усиление света посредством вынужденного излучения). В зависимости от применяемого рабочего вещества различают кристаллические, газовые и жидкостные лазеры.

Чтобы лазер начал действовать, необходимо перевести большое число атомов его рабочего вещества в одинаковые возбужденные состояния, так называемые метастабильные состояния, в которых атом пребывает сравнительно долгое

время (значительно превышающее Для этого рабочему веществу передается достаточная электромагнитная энергия от специального источника (метод «накачки»). Теперь в рабочем веществе лазера (имеющем форму тонкого длинного цилиндра, одним основанием которого является зеркало, другим - частично прозрачное зеркало) начнутся почти одновременные вынужденные переходы всех возбужденных атомов в нормальное состояние. Эти переходы сопровождаются почти одновременным испусканием множества световых квантов (фотонов) , имеющих одинаковую частоту и фазу и движущихся по одному направлению - вдоль оси лазера. Поток этих фотонов и образует узкий, мощный пучок монохроматического света, выходящий из лазера.

Лазер дает световой пучок очень малой расходимости. Будучи, например, направлен на Луну, такой пучок создает на ее поверхности световое пятно диаметром всего лишь в (луч обычного прожектора создал бы на таком же расстоянии световое пятно диаметром в Плотность энергии в луче лазера исключительно велика - тысячи и десятки тысяч ; причем расчеты показывают, что это еще далеко не предельные значения возможных плотностей. С помощью линзы можно сфокусировать свет лазера так, что он мгновенно расплавит и испарит освещенный участок любого материала.

Все это делает лазер исключительно перспективным прибором, уже сейчас широко используемым во многих областях науки и техники. Сварка микрообъектов, сверление и резка сверхтвердых материалов, ускорение хода химических реакций, передача световых сигналов на сверхдальние расстояния (космическая связь), глазная хирургия (разрушение опухолей на сетчатке) - таков далеко не полный перечень применений лазера.

Отметим, что наряду с оптическими квантовыми генераторами созданы квантовые генераторы в диапазоне коротких радиоволн - мазеры


Выбор редакции
Зачастую количество возможных ответов превышает стандартные возможности маятника для биолокации или биолокационных рамок. Тогда на помощь...

Все мы знаем о парне, который устроился смотрителем/исследователем/блоггером на один из райских уголков Земли - этот человек является...

Если у вас возникла срочная необходимость внести платеж по кредиту, полученному в ОТП-банке, а вы не знаете, как это сделать, тогда этот...

Некоторые кошмары и вовсе леденят душу, а после утреннего пробуждения еще длительное время оставляют неприятный осадок на сердце....
Фарш пригодится для приготовления блинчиков, макарон по-флотски, фаршированного перца и других блюд. Но сначала его нужно пожарить, чтобы...
Время чтения: 2 мин. Каждый пользователь мобильной связи стремится снизить свои расходы на нее и периодически меняет тарифы на более...
Можно выделить несколько основных компонентов мировоззрения Нового времени. Теряется ощущение того, что есть подлинное существование...
Выбор подарков для друзей (сколько бы им лет не исполнялось) всегда требует ответственного подхода, но в возрасте от 15 до 25 лет каждый...
О том, как пить кровь в «Скайриме», задумываются многие игроки. Ведь при наличии соответствующей фракции (вампиры) должна быть и...
Новое