Объем треугольной пирамиды формула онлайн. Объем треугольной пирамиды



Определение. Боковая грань - это треугольник, у которого один угол лежит в вершине пирамиды, а противоположная ему сторона совпадает со стороной основания (многоугольника).

Определение. Боковые ребра - это общие стороны боковых граней. У пирамиды столько ребер сколько углов у многоугольника.

Определение. Высота пирамиды - это перпендикуляр, опущенный из вершины на основание пирамиды.

Определение. Апофема - это перпендикуляр боковой грани пирамиды, опущенный из вершины пирамиды к стороне основания.

Определение. Диагональное сечение - это сечение пирамиды плоскостью, проходящей через вершину пирамиды и диагональ основания.

Определение. Правильная пирамида - это пирамида, в которой основой является правильный многоугольник, а высота опускается в центр основания.


Объём и площадь поверхности пирамиды

Формула. Объём пирамиды через площадь основы и высоту:


Свойства пирамиды

Если все боковые ребра равны, то вокруг основания пирамиды можно описать окружность, а центр основания совпадает с центром окружности. Также перпендикуляр, опущенный из вершины, проходит через центр основания (круга).

Если все боковые ребра равны, то они наклонены к плоскости основания под одинаковыми углами.

Боковые ребра равны тогда, когда они образуют с плоскостью основания равные углы или если вокруг основания пирамиды можно описать окружность.

Если боковые грани наклонены к плоскости основания под одним углом, то в основание пирамиды можно вписать окружность, а вершина пирамиды проектируется в ее центр.

Если боковые грани наклонены к плоскости основания под одним углом, то апофемы боковых граней равны.


Свойства правильной пирамиды

1. Вершина пирамиды равноудалена от всех углов основания.

2. Все боковые ребра равны.

3. Все боковые ребра наклонены под одинаковыми углами к основанию.

4. Апофемы всех боковых граней равны.

5. Площади всех боковых граней равны.

6. Все грани имеют одинаковые двугранные (плоские) углы.

7. Вокруг пирамиды можно описать сферу. Центром описанной сферы будет точка пересечения перпендикуляров, которые проходят через середину ребер.

8. В пирамиду можно вписать сферу. Центром вписанной сферы будет точка пересечения биссектрис, исходящие из угла между ребром и основанием.

9. Если центр вписанной сферы совпадает с центром описанной сферы, то сумма плоских углов при вершине равна π или наоборот, один угол равен π/n , где n - это количество углов в основании пирамиды.


Связь пирамиды со сферой

Вокруг пирамиды можно описать сферу тогда, когда в основании пирамиды лежит многогранник вокруг которого можно описать окружность (необходимое и достаточное условие). Центром сферы будет точка пересечения плоскостей, проходящих перпендикулярно через середины боковых ребер пирамиды.

Вокруг любой треугольной или правильной пирамиды всегда можно описать сферу.

В пирамиду можно вписать сферу, если биссекторные плоскости внутренних двугранных углов пирамиды пересекаются в одной точке (необходимое и достаточное условие). Эта точка будет центром сферы.


Связь пирамиды с конусом

Конус называется вписанным в пирамиду, если их вершины совпадают, а основание конуса вписано в основание пирамиды.

Конус можно вписать в пирамиду, если апофемы пирамиды равны между собой.

Конус называется описанным вокруг пирамиды, если их вершины совпадают, а основание конуса описана вокруг основания пирамиды.

Конус можно описать вокруг пирамиды если, все боковые ребра пирамиды равны между собой.


Связь пирамиды с цилиндром

Пирамида называется вписанной в цилиндр, если вершина пирамиды лежит на одной основе цилиндра, а основание пирамиды вписано в другую основу цилиндра.

Цилиндр можно описать вокруг пирамиды если вокруг основания пирамиды можно описать окружность.


Определение. Усеченная пирамида (пирамидальная призма) - это многогранник, который находится между основанием пирамиды и плоскостью сечения, параллельной основанию. Таким образом пирамида имеет большую основу и меньшую основу, которая подобна большей. Боковые грани представляют собой трапеции.

Определение. Треугольная пирамида (четырехгранник) - это пирамида в которой три грани и основание являются произвольными треугольниками.

В четырехгранник четыре грани и четыре вершины и шесть ребер, где любые два ребра не имеют общих вершин но не соприкасаются.

Каждая вершина состоит из трех граней и ребер, которые образуют трехгранный угол .

Отрезок, соединяющий вершину четырехгранника с центром противоположной грани называется медианой четырехгранника (GM).

Бимедианой называется отрезок, соединяющий середины противоположных ребер, которые не соприкасаются (KL).

Все бимедианы и медианы четырехгранника пересекаются в одной точке (S). При этом бимедианы делятся пополам, а медианы в отношении 3:1 начиная с вершины.

Определение. Наклонная пирамида - это пирамида в которой одно из ребер образует тупой угол (β) с основанием.

Определение. Прямоугольная пирамида - это пирамида в которой одна из боковых граней перпендикулярна к основанию.

Определение. Остроугольная пирамида - это пирамида в которой апофема больше половины длины стороны основания.

Определение. Тупоугольная пирамида - это пирамида в которой апофема меньше половины длины стороны основания.

Определение. Правильный тетраэдр - четырехгранник у которого все четыре грани - равносторонние треугольники. Он является одним из пяти правильных многоугольников. В правильного тетраэдра все двугранные углы (между гранями) и трехгранные углы (при вершине) равны.

Определение. Прямоугольный тетраэдр называется четырехгранник у которого прямой угол между тремя ребрами при вершине (ребра перпендикулярны). Три грани образуют прямоугольный трехгранный угол и грани являются прямоугольными треугольниками, а основа произвольным треугольником. Апофема любой грани равна половине стороны основы, на которую падает апофема.

Определение. Равногранный тетраэдр называется четырехгранник у которого боковые грани равны между собой, а основание - правильный треугольник. У такого тетраэдра грани это равнобедренные треугольники.

Определение. Ортоцентричный тетраэдр называется четырехгранник у которого все высоты (перпендикуляры), что опущены с вершины до противоположной грани, пересекаются в одной точке.

Определение. Звездная пирамида называется многогранник у которого основой является звезда.

Определение. Бипирамида - многогранник, состоящий из двух различных пирамид (также могут быть срезаны пирамиды), имеющих общую основу, а вершины лежат по разные стороны от плоскости основания.

Определение пирамиды

Пирамида – это многогранник, основанием которого является многоугольник, а грани его являются треугольниками.

Онлайн-калькулятор

У пирамиды есть ребра . Можно сказать, что они тянутся к точке, называемой вершиной данной пирамиды. Ее основанием может быть произвольный многоугольник. Грань - это фигура, которая образуется в результате объединения двух ближайших ребер со стороной основания. Гранью пирамиды является треугольник. Расстояние от вершины пирамиды до середины стороны основания называется апофемой . Высотой пирамиды называется длина перпендикуляра, опущенного из вершины к центру ее основания.

Типы пирамид

Различают следующие типы пирамид.

  1. Прямоугольная - у нее ребро образует угол в 90 градусов с основанием.
  2. Правильная - ее основание - какой-либо правильный многоугольник, а вершина проецируется в центр этого основания.
  3. Тетраэдр - пирамида, у которой в основании лежит треугольник.

Формулы объема пирамиды

Объем пирамиды находится несколькими способами.

По площади основания и высоте пирамиды

Простое умножение одной трети площади основания на высоту пирамиды и является ее объемом.

Объем пирамиды по площади основания и высоте

V = 1 3 ⋅ S осн ⋅ h V=\frac{1}{3}\cdot S_{\text{осн}}\cdot h V = 3 1 ​ ⋅ S осн h

S осн S_{\text{осн}} S осн - площадь основания пирамиды;
h h h - высота данной пирамиды.

Задача 1

Площадь основания пирамиды равна 100 см 2 100\text{ см}^2 1 0 0 см 2 , а высота ее равна 30 см 30\text{ см} 3 0 см . Найдите объем тела.

Решение

S осн = 100 S_{\text{осн}}=100 S осн = 1 0 0
h = 30 h=30 h = 3 0

Все величины нам известны, подставляем их численные значения в формулу и находим:

V = 1 3 ⋅ S осн ⋅ h = 1 3 ⋅ 100 ⋅ 30 = 1000 см 3 V=\frac{1}{3}\cdot S_{\text{осн}}\cdot h=\frac{1}{3}\cdot 100\cdot 30=1000\text{ см}^3 V = 3 1 ​ ⋅ S осн h = 3 1 ​ ⋅ 1 0 0 ⋅ 3 0 = 1 0 0 0 см 3

Ответ

1000 см 3 . 1000\text{ см}^3. 1 0 0 0 см 3 .

Формула объема правильной треугольной пирамиды

Этот способ подходит, если пирамида правильная и треугольная.

Объем правильной треугольной пирамиды

V = h ⋅ a 2 4 3 V=\frac{h\cdot a^2}{4\sqrt{3}} V = 4 3 h ⋅ a 2

H h h - высота пирамиды;
a a a

Задача 2

Вычислите объем правильной треугольной пирамиды, если в ее основании лежит равносторонний треугольник, в котором сторона равна 5 см 5\text{ см} 5 см , а высота пирамиды равна – 19 см 19\text{ см} 1 9 см .

Решение

A = 5 a=5 a = 5
h = 19 h=19 h = 1 9

Просто подставляем данные величины в формулу для объема:

V = h ⋅ a 2 4 3 = 19 ⋅ 5 2 4 3 ≈ 68.6 см 3 V=\frac{h\cdot a^2}{4\sqrt{3}}=\frac{19\cdot 5^2}{4\sqrt{3}}\approx68.6\text{ см}^3 V = 4 3 h ⋅ a 2 = 4 3 1 9 ⋅ 5 2 6 8 . 6 см 3

Ответ

68.6 см 3 . 68.6\text{ см}^3. 6 8 . 6 см 3 .

Формула объема правильной четырехугольной пирамиды

Объем правильной четырехугольной пирамиды

V = 1 3 ⋅ h ⋅ a 2 V=\frac{1}{3}\cdot h\cdot a^2 V = 3 1 ​ ⋅ h ⋅ a 2

H h h - высота пирамиды;
a a a - сторона основания пирамиды.

Задача 3

Дана правильная четырехугольная пирамида. Вычислите ее объем, если ее высота равна 7 см 7\text{ см} 7 см , a сторона основания составляет – 2 см 2\text{ см} 2 см .

Решение

A = 2 a=2 a = 2
h = 7 h=7 h = 7

По формуле вычисляем:

V = 1 3 ⋅ h ⋅ a 2 = 1 3 ⋅ 7 ⋅ 2 2 ≈ 9.3 см 3 V=\frac{1}{3}\cdot h\cdot a^2=\frac{1}{3}\cdot 7\cdot 2^2\approx9.3\text{ см}^3 V = 3 1 ​ ⋅ h ⋅ a 2 = 3 1 ​ ⋅ 7 ⋅ 2 2 9 . 3 см 3

Ответ

9.3 см 3 . 9.3\text{ см}^3. 9 . 3 см 3 .

Формула объема тетраэдра

Объем тетраэдра

V = 2 ⋅ a 3 12 V=\frac{\sqrt{2}\cdot a^3}{12} V = 1 2 2 ​ ⋅ a 3

A a a - длина ребра тетраэдра.

Задача 4

Длина ребра тетраэдра равна 13 см 13\text{ см} 1 3 см . Найдите его объем.

Решение

A = 13 a=13 a = 1 3

Подставляем a a a в формулу для объема тетраэдра:

V = 2 ⋅ a 3 12 = 2 ⋅ 1 3 3 12 ≈ 259 см 3 V=\frac{\sqrt{2}\cdot a^3}{12}=\frac{\sqrt{2}\cdot 13^3}{12}\approx259\text{ см}^3 V = 1 2 2 ​ ⋅ a 3 = 1 2 2 1 3 3 2 5 9 см 3

Ответ

259 см 3 . 259\text{ см}^3.

Формула объема пирамиды как определитель

Наверное, самый экзотический способ вычисления объема данного тела.

Пусть даны векторы, на которых построена пирамида как на сторонах. Тогда ее объем будет равен одной шестой смешанного произведения векторов. Последний в свою очередь равен определителю составленному из координат этих векторов. Итак, если пирамида построена на трех векторах:

a ⃗ = (a x , a y , a z) \vec{a}=(a_x, a_y, a_z)

тогда объем соответствующей пирамиды это такой определитель:

Объем пирамиды через определитель

V = 1 6 ⋅ ∣ a x a y a z b x b y b z c x c y c z ∣ V=\frac{1}{6}\cdot\begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \\ \end{vmatrix}

Задача 5

Найти объем пирамиды через смешанное произведение векторов, координаты которых такие:

Решение

a ⃗ = (2 , 3 , 5) \vec{a}=(2,3,5)

По формуле:

V = 1 6 ⋅ ∣ 2 3 5 1 4 4 3 5 7 ∣ = 1 6 ⋅ (2 ⋅ 4 ⋅ 7 + 3 ⋅ 4 ⋅ 3 + 5 ⋅ 1 ⋅ 5 − 5 ⋅ 4 ⋅ 3 − 2 ⋅ 4 ⋅ 5 − 3 ⋅ 1 ⋅ 7) = 1 6 ⋅ (56 + 36 + 25 − 60 − 40 − 21) = 1 6 ⋅ (− 4) = − 2 3 ≈ − 0.7 V=\frac{1}{6}\cdot\begin{vmatrix} 2 & 3 & 5 \\ 1 & 4 & 4 \\ 3 & 5 & 7 \\ \end{vmatrix}=\frac{1}{6}\cdot(2\cdot4\cdot7 + 3\cdot4\cdot3 + 5\cdot1\cdot5 - 5\cdot4\cdot3 - 2\cdot4\cdot5 - 3\cdot1\cdot7) =\frac{1}{6}\cdot(56 + 36 + 25 - 60 - 40 - 21)=\frac{1}{6}\cdot(-4)=-\frac{2}{3}\approx-0.7

Мы должны взять модуль этого числа, так как объем это неотрицательная величина:

V = 0.7 см 3 V=0.7\text{ см}^3

Ответ

0.7 см 3 . 0.7\text{ см}^3.

Одной из самых простых объемных фигур является треугольная пирамида, поскольку она состоит из наименьшего числа граней, из которого можно образовать фигуру в пространстве. В данной статье рассмотрим формулы, с помощью которых можно найти объем треугольной правильной пирамиды.

Треугольная пирамида

Согласно общему определению пирамида представляет собой многоугольник, все вершины которого соединены с одной точкой, не расположенной в плоскости этого многоугольника. Если последний представляет собой треугольник, то вся фигура называется треугольной пирамидой.

Рассматриваемая пирамида состоит из основания (треугольника) и трех боковых граней (треугольников). Точка, в которой соединены три боковые грани, называется вершиной фигуры. Опущенный на основание перпендикуляр из этой вершины является высотой пирамиды. Если точка пересечения перпендикуляра с основанием совпадает с точкой пересечения медиан треугольника в основании, тогда говорят о правильной пирамиде. В противном случае она будет наклонной.

Как было сказано, основание треугольной пирамиды может представлять собой треугольник общего типа. Однако если он является равносторонним, а сама пирамида прямой, тогда говорят о правильной объемной фигуре.

Любая треугольная пирамида имеет 4 грани, 6 ребер и 4 вершины. Если длины всех ребер равны между собой, тогда такая фигура называется тетраэдром.

общего типа

Прежде чем записать правильной треугольной пирамиды, приведем выражение этой физической величины для пирамиды общего типа. Это выражение имеет вид:

Здесь S o - площадь основания, h - высота фигуры. Это равенство будет справедливым для любого типа основания многоугольника пирамиды, а также для конуса. Если же в основании находится треугольник, имеющий длину стороны a и высоту h o , опущенную на нее, тогда формула для объема запишется так:

Формулы объема правильной треугольной пирамиды

Правильная пирамида треугольная имеет равносторонний треугольник в основании. Известно, что высота этого треугольника связана с длиной его стороны равенством:

Подставляя это выражение в формулу для объема треугольной пирамиды, записанную в предыдущем пункте, получаем:

V = 1/6*a*h o *h = √3/12*a 2 *h.

Объем правильной пирамиды с треугольным основанием является функцией длины стороны основания и высоты фигуры.

Поскольку любой правильный многоугольник можно вписать в окружность, радиус которой однозначно определит длину стороны многоугольника, тогда эту формулу можно записать через соответствующий радиус r:

Эту формулу легко получить из предыдущей, если учесть, что радиус r описанной окружности через длину стороны a треугольника определяется выражением:

Задача на определение объема тетраэдра

Покажем, как использовать приведенные выше формулы при решении конкретных задач геометрии.

Известно, что тетраэдр имеет длину ребра 7 см. Найдите объем правильной треугольной пирамиды-тетраэдра.

Напомним, что тетраэдр является правильной в которой все основания равны между собой. Чтобы воспользоваться формулой объема треугольной, необходимо вычислить две величины:

  • длину стороны треугольника;
  • высоту фигуры.

Первая величина известна из условия задачи:

Чтобы определить высоту, рассмотрим фигуру, изображенную на рисунке.

Отмеченный треугольник ABC является прямоугольным, где угол ABC равен 90 o . Сторона AC - это гипотенуза, длина которой равна a. Путем несложных геометрических рассуждений можно показать, что сторона BC имеет длину:

Заметим, что длина BC является радиусом описанной вокруг треугольника окружности.

h = AB = √(AC 2 - BC 2) = √(a 2 - a 2 /3) = a*√(2/3).

Теперь можно h и a подставить в соответствующую формулу для объема:

V = √3/12*a 2 *a*√(2/3) = √2/12*a 3 .

Таким образом, мы получили формулу объема тетраэдра. Видно, что объем зависит только от длины ребра. Если в выражение подставить значение из условия задачи, тогда получаем ответ:

V = √2/12*7 3 ≈ 40,42 см 3 .

Если сравнить эту величину с объемом куба, имеющим такое же ребро, то получим, что объем тетраэдра в 8,5 раз меньше. Это свидетельствует о том, что тетраэдр является компактной фигурой, которая реализуется в некоторых природных веществах. Например, молекула метана имеет тетраэдрическую форму, а каждый атом углерода в алмазе соединен с четырьмя другими атомами, образующими тетраэдр.

Задача с гомотетичными пирамидами

Решим одну любопытную геометрическую задачу. Предположим, что имеется треугольная правильная пирамида с некоторым объемом V 1 . Во сколько раз следует уменьшить размеры этой фигуры, чтобы получить гомотетичную ей пирамиду с объемом, в три раза меньшим исходного?

Задачу начнем решать с записи формулы для исходной правильной пирамиды:

V 1 = √3/12*a 1 2 *h 1 .

Пусть необходимый по условию задачи объем фигуры получится, если умножить ее параметры на коэффициент k. Имеем:

V 2 = √3/12*k 2 *a 1 2 *k*h 1 = k 3 *V 1 .

Поскольку из условия известно отношение объемов фигур, то получаем значение коэффициента k:

k = ∛(V 2 /V 1) = ∛(1/3) ≈ 0,693.

Отметим, что аналогичное значение коэффициента k мы бы получили для пирамиды произвольного типа, а не только для правильной треугольной.

Главной характеристикой любой геометрической фигуры в пространстве является ее объем. В данной статье рассмотрим, что собой представляет пирамида с треугольником в основании, а также покажем, как находить объем треугольной пирамиды - правильной полной и усеченной.

Что это - треугольная пирамида?

Каждый слышал о древних египетских пирамидах, тем не менее они являются четырехугольными правильными, а не треугольными. Объясним, как получить треугольную пирамиду.

Возьмем произвольный треугольник и соединим все его вершины с некоторой одной точкой, расположенной вне плоскости этого треугольника. Образованная фигура будет называться треугольной пирамидой. Она показана на рисунке ниже.

Как видно, рассматриваемая фигура образована четырьмя треугольниками, которые в общем случае являются разными. Каждый треугольник - это стороны пирамиды или ее грань. Эту пирамиду часто называют тетраэдром, то есть четырехгранной объемной фигурой.

Помимо сторон, пирамида также обладает ребрами (их у нее 6) и вершинами (их 4).

с треугольным основанием

Фигура, которая получена с использованием произвольного треугольника и точки в пространстве, будет неправильной наклонной пирамидой в общем случае. Теперь представим, что исходный треугольник имеет одинаковые стороны, а точка пространства расположена точно над его геометрическим центром на расстоянии h от плоскости треугольника. Построенная с использованием этих исходных данных пирамида будет правильной.

Очевидно, что число ребер, сторон и вершин у правильной треугольной пирамиды будет таким же, как у пирамиды, построенной из произвольного треугольника.

Однако правильная фигура обладает некоторыми отличительными чертами:

  • ее высота, проведенная из вершины, точно пересечет основание в геометрическом центре (точка пересечения медиан);
  • боковая поверхность такой пирамиды образована тремя одинаковыми треугольниками, которые являются равнобедренными или равносторонними.

Правильная треугольная пирамида является не только чисто теоретическим геометрическим объектом. Некоторые структуры в природе имеют ее форму, например кристаллическая решетка алмаза, где атом углерода соединен с четырьмя такими же атомами ковалентными связями, или молекула метана, где вершины пирамиды образованы атомами водорода.

треугольной пирамиды

Определить объем совершенно любой пирамиды с произвольным n-угольником в основании можно с помощью следующего выражения:

Здесь символ S o обозначает площадь основания, h - это высота фигуры, проведенная к отмеченному основанию из вершины пирамиды.

Поскольку площадь произвольного треугольника равна половине произведения длины его стороны a на апофему h a , опущенную на эту сторону, то формула объема треугольной пирамиды может быть записана в следующем виде:

V = 1/6 × a × h a × h

Для общего типа определение высоты является непростой задачей. Для ее решения проще всего воспользоваться формулой расстояния между точкой (вершиной) и плоскостью (треугольным основанием), представленной уравнением общего вида.

Для правильной имеет конкретный вид. Площадь основания (равностороннего треугольника) для нее равна:

Подставляем ее в общее выражение для V, получаем:

V = √3/12 × a 2 × h

Частным случаем является ситуация, когда у тетраэдра все стороны оказываются одинаковыми равносторонними треугольниками. В этом случае определить его объем можно, только исходя из знания параметра его ребра a. Соответствующее выражение имеет вид:

Усеченная пирамида

Если верхнюю часть, содержащую вершину, отсечь у правильной треугольной пирамиды, то получится усеченная фигура. В отличие от исходной она будет состоять из двух равносторонних треугольных оснований и трех равнобедренных трапеций.

Ниже на фото показано, как выглядит правильная усеченная пирамида треугольная, изготовленная из бумаги.

Для определения объема треугольной пирамиды усеченной необходимо знать три ее линейных характеристики: каждую из сторон оснований и высоту фигуры, равную расстоянию между верхним и нижним основаниями. Соответствующая формула для объема записывается так:

V = √3/12 × h × (A 2 + a 2 + A × a)

Здесь h - высота фигуры, A и a - длины сторон большого (нижнего) и малого (верхнего) равносторонних треугольников соответственно.

Решение задачи

Чтобы приведенная информация в статье была понятнее для читателя, покажем на наглядном примере, как пользоваться некоторыми из записанных формул.

Пусть объем треугольной пирамиды равен 15 см 3 . Известно, что фигура является правильной. Следует найти апофему a b бокового ребра, если известно, что высота пирамиды составляет 4 см.

Поскольку известны объем и высота фигуры, то можно воспользоваться соответствующей формулой для вычисления длины стороны ее основания. Имеем:

V = √3/12 × a 2 × h =>

a = 12 × V / (√3 × h) = 12 × 15 / (√3 × 4) = 25,98 см

a b = √(h 2 + a 2 / 12) = √(16 + 25,98 2 / 12) = 8,5 см

Рассчитанная длина апофемы фигуры получилась больше ее высоты, что справедливо для пирамиды любого типа.

Многогранник, в основании которого лежит правильный треугольник, а остальные грани представлены равнобедренными треугольниками называется треугольной пирамидой .Еще такую пирамиду называют тетраэдром.

Правильная пирамида обладает множеством свойств, которые выводятся из составляющих ее фигур:

  • Все стороны основания равны между собой, потому что оно представлено правильным треугольником;
  • Все ребра пирамиды также равны между собой;
  • Т.к. каждая грань образует равнобедренный треугольник, в котором ребра равны и основания равны, то можно сказать, что площадь каждой грани одинакова;
  • Все двугранные углы при основании равны.

Рассчитывается, как сумма площадей основания и боковой развертки. Также ее можно найти, если рассчитать площадь одной из боковых граней и основания. Формула объема треугольной пирамиды также выводится из свойств треугольников, из которых она состоит:

Площадь основания рассчитывается из формулы :

Рассмотрим пример расчета объема треугольной пирамиды.

Пусть дана треугольная пирамида. Сторона основания равна a = 2 см, а высота равна h = 2√3. Найдите объем заданного многогранника.
Для начала найдем площадь основания. Для этого подставим известные данные в приведенную выше формулу:

Теперь используем найденное значение для расчета объема треугольной пирамиды:

Для расчета площади треугольной пирамиды можно также использовать сокращенную формулу. В ней совмещаются площадь основания и высота, а читается такая формула как треть произведения площади основания на высоту пирамиды:

Используя эту формулу, важно строго следить за подсчетами и сокращениями. Одна маленькая ошибка может привести к неверному результату. В целом, найти объем правильной треугольной пирамиды очень просто.

Выбор редакции
Зачастую количество возможных ответов превышает стандартные возможности маятника для биолокации или биолокационных рамок. Тогда на помощь...

Все мы знаем о парне, который устроился смотрителем/исследователем/блоггером на один из райских уголков Земли - этот человек является...

Если у вас возникла срочная необходимость внести платеж по кредиту, полученному в ОТП-банке, а вы не знаете, как это сделать, тогда этот...

Некоторые кошмары и вовсе леденят душу, а после утреннего пробуждения еще длительное время оставляют неприятный осадок на сердце....
Фарш пригодится для приготовления блинчиков, макарон по-флотски, фаршированного перца и других блюд. Но сначала его нужно пожарить, чтобы...
Время чтения: 2 мин. Каждый пользователь мобильной связи стремится снизить свои расходы на нее и периодически меняет тарифы на более...
Можно выделить несколько основных компонентов мировоззрения Нового времени. Теряется ощущение того, что есть подлинное существование...
Выбор подарков для друзей (сколько бы им лет не исполнялось) всегда требует ответственного подхода, но в возрасте от 15 до 25 лет каждый...
О том, как пить кровь в «Скайриме», задумываются многие игроки. Ведь при наличии соответствующей фракции (вампиры) должна быть и...
Новое